
AN OPEN SOURCE FRAMEWORK FOR OFFLOADING BIG

DATA AND AI TASKS (OFFLOAD) TO HETEROGENEOUS

COMPUTE UNITS

A Thesis in

Electrical & Computer Engineering

Presented to the Faculty of the University

of Missouri–Kansas City in partial fulfilment of the requirements for the degree

MASTER OF SCIENCE

by

Satya Sai Siva Rama Krishna Akula

Kansas City, MO, USA

Kansas City, Missouri 2024

1

Ⓧc 2024

SATYA SAI SIVA RAMA KRISHNA AKULA

ALL RIGHTS RESERVED

2

ABSTRACT

The ever-increasing demands of artificial intelligence (AI) and big data processing have spurred

the rapid development of novel hardware architectures specifically designed for computationally

intensive tasks. Alongside these advancements, software solutions are emerging to exploit this

specialised hardware by offloading tasks. However, proprietary software often necessitates a substantial

learning curve for users, hindering widespread adoption and flexibility.

This paper proposes OFFLOAD, an open-source, hardware-agnostic software-hardware

framework. OFFLOAD facilitates the distribution of tasks across diverse hardware units, encompassing

both cutting-edge accelerators and existing system-on-chip (SoC) architectures. Our framework

seamlessly integrates with popular databases and application development tools. Through the utilisation

of multi-level abstractions implemented at the compiler, operating system, and driver levels, OFFLOAD

translates high-level code and data into hardware-optimised binary instructions. To the best of our

knowledge, OFFLOAD represents a ground-breaking approach within this domain.

The feasibility of OFFLOAD is demonstrably validated by its integration with prevalent tools such

as MySQL, Apache Spark, and Apache Arrow within a user-friendly Python environment.

Subsequently, tasks are offloaded for execution on hardware leveraging memory-mapped I/O. This is

exemplified by integrating OFFLOAD with Raspberry Pi devices, showcasing the entire workflow from

software-based data query to hardware execution.

Index Terms: Distributed computing, Hardware accelerators, Custom-designed hardware network,

Big data analysis, Machine learning.

3

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engineering,

have examined a thesis titled “AN OPEN SOURCE FRAMEWORK FOR OFFLOADING BIG DATA

AND AI TASKS (OFFLOAD) TO HETEROGENEOUS COMPUTE UNITS” presented by Satya Sai

Siva Rama Krishna Akula, a candidate for the Master of Science degree, and hereby certify that in their

opinion it is worthy of acceptance.

Supervisory Committee

Rahman Mostafizur, Ph.D., Committee Chair

Department of Division of Energy and Systems, UMKC

Preetham Goli, Ph.D. Committee Member 1

Department of Division of Energy, matter, and systems, UMKC

Mahbube K. Sidiki, Ph.D. Committee Member 2

Department of Computer Science Electrical Engineering, UMKC

4

CONTENTS

ABSTRACT . 3

ILLUSTRATIONS . 8

TABLES . 9

ACKNOWLEDGEMENTS . 10

CHAPTER 1 . 11

INTRODUCTION . 11

1.1 Increasing Complexity of AI and Big Data Tasks . 11

1.2 Optimised Architectures for Specific Workloads .12

1.3 Scalability and Efficiency in Data Processing .13

1.4 Vendor Lock-in and Software Ecosystems .13

1.5 Overview of the OFFLOAD Framework . 16

CHAPTER 2 . 18

FLOW OF INFORMATION . 18

2.1 Data Distribution . 18

2.3 Query Distribution Flow . 19

CHAPTER 3 . 21

SOFTWARE STACK . 21

3.1 Application Layer .21

3.2 Python Development Environment . 21

3.3 Apache Spark . 22

3.4 JDBC Integration . 24

3.5 Apache Arrow . 23

3.6 Data Preparation and Transfer . 24

5

3.7 Streamlining Subsequent Processing Steps . 25

3.8 Integration with Hardware Accelerators . 25

CHAPTER 4 . 37

HARDWARE SETUP . 37

CHAPTER 5 . 27

HARDWARE NETWORK AND TASK DISTRIBUTION . .. 27

4.1 Custom-Designed Hardware Network .27

4.2 Shared Memory Device Driver Interface .27

4.3 Central Accelerator Master . 27

4.4 Accelerator worker Devices . 28

4.5 Coordinated Processing .28

4.6 Integration and Optimization . 29

4.7 Apache Spark Integration . 29

4.8 Apache Arrow Optimization . 29

4.9 Custom Firmware's Role . 30

4.10 Hardware Network Efficiency . 30

CHAPTER 6 . 40

Software & Firmware Implementation . 40

CHAPTER 7 . 43

Results . 43

7.1 Host Side . 44

7.2 Controller Side . 44

7.3 Worker Side .45

7.4 Timing Analysis .45

7.5 Comparisons . 48

CHAPTER 8 . 50

6

Conclusion . 50

References . 51

VITA 54

7

ILLUSTRATIONS
Figure Page

1. Integration of Software Frameworks with Hardware Accelerators using OFFLOAD, Layers -1 from
bottom indicates versatile platforms that can potentially used as accelerator hardwares for this project,
Layer-2 indicates any kind of Flash memory, Layer-3 & 4 is custom firmware, task distribution
leveraging all the higher level frameworks to utilise this framework ...13

2. Flow of (A) Data Distribution and (B) Query Distribution ..18

3. Software & Hardware Stack of OFFLOAD Framework, Hardware is represented in green, firmware
in red and Open Source Software in Yellow ... 21

4. Block Diagram of Hardware Setup, illustrates connections across the shared memory, bus controller,
worker RPi and controller RPis ...37

5.

6. Firmware Layers, illustrates the orchestration of firmware across the project specifying task
distribution roles of the firmware layers ...40

7. Code-base folder structure, listed all firmware related files in the project from host side, controller
side and worker side ..42

8. Demonstration of query handling from host to distributed accelerator network, illustrating the
complete life cycle of the project from data distribution to query processing43

9.Master dividing query into subqueries for offloading to workers ...45

10. Predictive Analysis of Processing Time vs. Number of Worker Nodes, illustrates the time taken by
the hardware if the framework is scaled up ...48

8

TABLES

Table Page

1. SN54HC153 Multiplexer Configuration to Select Master and worker Devices39

2. Timing Values Collected from the framework ...47

3. Qualitative Comparison of OFFLOAD with other Frameworks ..49

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to all those who have contributed

to the completion of this thesis. Their support, guidance and encouragement were invaluable

9

throughout this journey. First and foremost, I am deeply grateful to my thesis advisor, Dr Rahman,

for their unwavering guidance, expertise and continuous support. Their insightful feedback, patience

and dedication have been instrumental in shaping this research project. I would like to extend my

gratitude to the members of this thesis committee, Dr. Preetham Goli, Dr. Mahbube Sidikki for their

valuable time, expertise, and constructive feedback. Their valuable insights and suggestions have

contributed to the overall quality and rigour of this thesis.

My heartfelt appreciation goes to my family and friends for their unwavering support,

encouragement and understanding throughout my academic journey. Their love, motivation, and

belief in me have been my driving force, and I am forever grateful for that. Presence in my life. Their

support has made this research experience memorable and enjoyable. Lastly, I would like to

acknowledge the participants who generously volunteered their time and participated in the data

collection process. Their contribution is invaluable and has made this research possible. To everyone

who has played a part, big or small, in the competition of this thesis, I extend my deepest gratitude.

Your support and encouragement have been invaluable and I'm truly grateful for the opportunity to

have worked on this research project.

Thank you all.

CHAPTER 1

INTRODUCTION

The rapid evolution of artificial intelligence (AI) and big data has reshaped the requirements for

computing resources, especially as enterprises and researchers tackle increasingly complex and

data-intensive tasks. Traditional central processing units (CPUs) have reached their practical limits in

10

handling the concurrent and high-throughput demands posed by modern applications, resulting in

delays, inefficiencies, and increased costs. Addressing these challenges requires a new approach that not

only leverages specialized hardware accelerators [1] but also provides an open-source, flexible

framework for developers to seamlessly integrate diverse hardware units without the constraints of

proprietary solutions. This phenomenon is not only reshaping the landscape of computing but also

driving innovation at an unprecedented pace. Let's delve deeper into why this competition is unfolding

and the implications it carries.

Increasing Complexity of AI and Big Data Tasks: The complexity of AI and big data tasks is

growing exponentially as applications expand in scale, sophistication, and impact across industries.

Modern AI models, especially deep neural networks, require substantial computing power to handle

massive datasets, intricate calculations, and intensive training processes. For example, training a large

language model or a convolutional neural network for image recognition can involve billions of

parameters, necessitating prolonged computation that could take days or weeks on conventional CPUs.

The need to process and analyze vast volumes of data, often in real time, further complicates these tasks,

as AI-driven applications like autonomous vehicles, real-time fraud detection, and personalized

recommendations demand fast, precise computations with low latency. Big data applications are

similarly affected, with the need to parse structured and unstructured data from diverse sources—social

media, IoT sensors, transaction logs, and more—requiring a high degree of parallelism to efficiently

manage and extract valuable insights. Traditional CPUs, built for general-purpose tasks, are typically

inadequate for such workloads, as they lack the parallel processing capabilities and specialized

architecture that high-performance AI and big data tasks require. Consequently, the escalating

complexity of these workloads drives the demand for specialized hardware accelerators, like GPUs,

TPUs, and FPGAs, which are tailored to handle parallel data processing, optimize matrix and tensor

operations, and deliver the necessary speed and efficiency.

Example: Training a deep learning model on a massive dataset can take weeks or even months

using conventional CPUs. With specialised accelerators like Google's TPU [3] or Nvidia's GPU, this

process can be accelerated significantly, reducing training times to hours or even minutes.

11

Optimised Architectures for Specific Workloads: Unlike general-purpose CPUs, which are

designed to handle a wide range of tasks, specialised accelerators are tailored for specific workloads.

This specialisation allows for optimizations that can greatly enhance performance and energy efficiency

for targeted tasks such as matrix multiplication or convolutional operations commonly found in AI

algorithms. Current trends in hardware accelerators reflect the demand for specialized,

high-performance solutions across fields like AI, big data, and edge computing, driving innovation in

heterogeneous computing architectures. Tailored accelerators, such as GPUs, TPUs, and AI-specific

ASICs, are gaining traction due to their efficiency in tasks like deep learning and data processing.

Concurrently, edge computing accelerators address real-time processing needs in environments with

constrained resources, such as autonomous vehicles and IoT applications, while early-stage quantum

accelerators hold potential for solving complex, intractable problems. Domain-specific accelerators are

also emerging, designed to optimize unique workloads in genomics, financial modeling, and

cybersecurity. Open-source hardware efforts, like RISC-V and OpenPOWER, aim to reduce vendor

lock-in, fostering flexibility and interoperability for diverse applications. Together, these trends

underscore the shift towards specialized, scalable, and energy-efficient hardware solutions that support

the growing computational requirements of modern applications.

Example: NVIDIA's GPUs are specifically optimized for matrix multiplication, a core operation in

many deep learning algorithms, where large matrices are processed in parallel to accelerate tasks like

neural network training. By tailoring the architecture with thousands of small, highly efficient cores that

handle parallel tasks, GPUs achieve remarkable speed and efficiency in these computations,

significantly outperforming traditional CPUs. In contrast, Google’s TPUs (Tensor Processing Units) are

optimized for tensor operations, a type of multidimensional matrix computation frequently used in

machine learning. TPUs feature a systolic array design that allows them to handle tensor-based

operations even faster than GPUs, making them ideal for large-scale machine learning workloads.

Meanwhile, FPGAs (Field-Programmable Gate Arrays) are optimized for flexibility, allowing

developers to reconfigure the hardware to support specific tasks such as data encryption or image

processing. This adaptability makes FPGAs suitable for applications that require low latency and high

customization, like autonomous vehicles or high-frequency trading. Each of these architectures—GPUs

for matrix-heavy calculations, TPUs for tensor operations, and FPGAs for adaptable

workflows—demonstrates how hardware designs are evolving to meet the unique demands of diverse

computational tasks, achieving performance gains tailored to specific use cases.

12

Scalability and Efficiency in Data Processing: Scalability and efficiency are crucial in data

processing as datasets grow larger and more complex across diverse applications. Efficient data handling

becomes paramount to ensure high throughput, optimal resource utilization, and energy efficiency,

especially in distributed systems where data is processed across multiple nodes or devices. Specialized

accelerators can manage vast datasets while reducing power consumption and processing times,

providing significant advantages over traditional processing methods. In our project, we incorporate

Apache Arrow, a framework designed specifically for efficient data processing and interoperability.

Apache Arrow’s in-memory columnar storage format accelerates analytic workloads by minimizing

serialization and deserialization overhead, which is essential in environments where data needs to be

accessed and processed across different components seamlessly. Arrow also supports zero-copy reads,

which eliminate unnecessary data transfers and streamline operations, making it ideal for tasks that

demand high performance and low latency. By using Apache Arrow, our project benefits from efficient

data sharing between various systems, ensuring that the hardware accelerators are fed data in an

optimized format, thus maximizing processing speed and system efficiency. This approach not only

enables horizontal scalability as more data is generated but also maintains system performance as the

workload scales, demonstrating the importance of tools like Apache Arrow in achieving scalable and

efficient data processing in modern computing frameworks.

Vendor Lock-in and Software Ecosystems: Vendor lock-in is a significant challenge in hardware

acceleration, where proprietary software ecosystems often tie users to specific hardware platforms,

limiting flexibility and interoperability. Each hardware accelerator—such as NVIDIA GPUs, Google

TPUs, or Intel FPGAs—typically includes unique SDKs, libraries, and toolchains tailored to its

architecture, which can create a closed ecosystem. For instance, developers working with NVIDIA

GPUs rely on CUDA, a proprietary parallel computing platform and API. While CUDA provides

powerful tools for performance optimization on NVIDIA hardware, it also makes it difficult for

applications to migrate to other platforms, as they would require extensive code rewriting and adaptation

for alternative architectures. This limitation restricts organizations, developers, and researchers from

freely adopting new or alternative accelerators, potentially increasing costs and reducing adaptability.

In our project, we address this problem through an open-source, hardware-agnostic framework that

allows for seamless integration across diverse hardware platforms. By building on top of existing

protocols like SPI and flexible tools like Apache Arrow for data interoperability and employing a

modular architecture, our framework supports multiple hardware accelerators without locking users into

13

any specific vendor’s ecosystem. For example, data is handled using a standardized columnar format

with Arrow, which can be readily interpreted and processed by different accelerators, ensuring that the

data pipeline remains flexible and compatible across platforms. This approach enables our project to

bypass vendor-specific requirements, reducing dependency on any single hardware provider and

allowing users to choose or switch to the most suitable accelerators for their needs. Through this open

and adaptable design, our project mitigates the issue of vendor lock-in, providing users with greater

control, lower costs, and increased freedom to leverage advancements across the rapidly evolving

landscape of hardware accelerators.

In conclusion, the competition among chip manufacturers to develop specialised hardware

accelerators is being driven by the increasing demand for efficient computing solutions in AI and Big

Data analytics. These accelerators offer unprecedented performance gains, optimised architectures for

specific workloads, scalability, and energy efficiency. However, the challenge of vendor lock-in

underscores the importance of developing OFFLOAD framework, an open and interoperable software

solution to ensure seamless integration and adoption across diverse computing environments.

14

Fig. 1. Layered Architecture of the OFFLOAD Framework for Integration with Hardware
Accelerators

Overview of the OFFLOAD Framework: The OFFLOAD framework is an open-source,

hardware-agnostic platform designed to distribute compute-intensive tasks across heterogeneous

hardware accelerators. This flexibility allows it to adapt to diverse hardware configurations, from GPUs

and TPUs to FPGAs and other specialized devices, providing an efficient and scalable solution for AI

and big data applications.

As Figure 1 illustrates the layered integration of the OFFLOAD framework with various hardware

accelerators, highlighting each component's role in the data processing pipeline. At the base, Layer-1

represents the flexible hardware platforms that can serve as accelerators, ranging from GPUs to FPGAs

and other specialized processors. Layer-2 encompasses memory components, such as flash memory,

essential for storing and managing large datasets during processing. Layers 3 and 4 depict custom

firmware and task distribution mechanisms that interact with higher-level software frameworks,

ensuring that workloads are effectively managed and distributed across the hardware network. This

layered design underscores OFFLOAD’s ability to optimize data flow and computational efficiency,

making it suitable for demanding AI and big data applications.

OFFLOAD’s architecture is composed of several integrated layers: a software stack, custom

firmware, and a dedicated hardware network. The software stack facilitates data movement and

computation through an intuitive application interface, primarily built in Python, which interacts

seamlessly with tools like Apache Spark and Apache Arrow. Apache Spark serves as the main engine

for data processing and initial transformations, while Apache Arrow optimizes data storage and transfer,

enabling zero-copy reads that streamline the data flow from storage to hardware accelerators. This

columnar data format significantly enhances performance, as it allows for efficient data manipulation

across different components.

The custom firmware acts as the intermediary between the software and hardware layers,

optimizing data for hardware processing by performing functions like data splitting, formatting, and

metadata management. This ensures that each hardware unit receives data tailored to its capabilities,

reducing latency and maximizing computational efficiency. The firmware also manages task allocation

and scheduling, distributing work evenly across the hardware network to prevent bottlenecks and ensure

15

optimal utilization of each accelerator.

At the hardware level, OFFLOAD includes a central master accelerator and multiple worker

devices that work in parallel. The master device orchestrates task distribution and data flow, leveraging

shared memory to facilitate fast communication between itself and the worker devices. Each worker is

equipped with specialized firmware to execute assigned tasks independently, allowing the framework to

handle large-scale computations in a distributed, parallel manner.

This multi-layered approach enables OFFLOAD to support complex workflows, such as

data-intensive AI and big data operations, by efficiently coordinating resources across various hardware

platforms. The Flow of Information chapter will delve further into this process, illustrating how data

moves seamlessly through the system to ensure high performance, scalability, and adaptability across

diverse computing environments.

16

CHAPTER 2

FLOW OF INFORMATION

The data flow within the system is structured into two main stages: data distribution and query

distribution, each playing a crucial role in the overall processing pipeline.

Fig. 2. Flow of (A) Data Distribution and (B) Query Distribution

2.1 Data Distribution

The data distribution stage orchestrates the seamless movement of data from the database to the

accelerator hardware network for processing. When a user query specifies an operation on a MySQL

database table, Apache Spark, a big data processing framework, initiates the process by utilising JDBC

17

connectors to connect to the database and retrieve the requested data efficiently. Once the data is

retrieved, custom firmware steps in to perform two critical functions. Firstly, it splits the data into

smaller subsets tailored to the number of available worker accelerators, such as Raspberry Pi [18][19]

devices, within the network. This division facilitates parallel processing, ensuring that the workload is

evenly distributed across the hardware accelerators.

Secondly, Apache Arrow is employed to convert these data subsets into the space-optimised

Parquet format [20]. Parquet is a columnar storage format known for its efficient data storage and

retrieval capabilities, particularly on disk. By leveraging Apache Arrow's in-memory data structure

specification, the system further enhances performance, providing a standardised method to represent

data in memory for seamless communication across different programming languages.

Subsequently, the master device retrieves the prepared data from the server using the efficient

TCP/IP protocol in conjunction with the Paho MQTT messaging library [21]. The master device then

splits the data into subsets corresponding to the number of available worker devices. These data subsets

are written to designated shared memory locations using a shared memory driver and a Shared Bus

interface driver. The final step in the data distribution stage involves the master device signalling the

worker Raspberry Pi devices to confirm data reception and readiness for processing, ensuring that each

device is prepared to execute its assigned tasks.

2.2 Query Distribution Flow

The query distribution flow manages the translation and execution of user queries within the

distributed processing environment, distinguishing this system from traditional database servers that

directly parse and execute SQL queries. The distributed nature of the data stored in shared memory

across multiple accelerators necessitates a custom firmware approach to handle queries effectively.

The process begins when a user submits a query, ideally adhering to standard SQL syntax. This

query is then sent to the master accelerator, such as a Raspberry Pi. The custom firmware on the master

accelerator intercepts the query and performs parsing to understand the requested operation. Once the

query is parsed, the master accelerator leverages shared memory to distribute sub-queries or tasks to the

respective worker accelerators, ensuring that each part of the query is assigned to the appropriate device

for processing.

18

Each worker accelerator receives its assigned sub-query and utilises the optimised Apache Arrow

format for efficient processing. Apache Arrow's in-memory data structure facilitates rapid data handling

and minimises processing overhead, allowing the worker devices to execute their tasks efficiently. Upon

completion of their assigned tasks, the results from each worker device are sent back to the master

accelerator using shared memory. This method of communication ensures that data transfer is fast and

reliable, maintaining the overall efficiency of the system.

Finally, the custom firmware on the master accelerator aggregates the individual results from the

worker devices. This aggregation process may involve performing additional operations as required to

compile the final outcome. The master then populates the final result for the user, completing the query

execution process. By facilitating parallel processing of the query across multiple accelerators, this

approach aims to achieve significant performance improvements for complex data operations, ensuring

that the system can handle large-scale queries quickly and accurately.

19

CHAPTER 3
SOFTWARE STACK

The software stack behind this project orchestrates data movement and processing across several

layers, facilitating efficient distributed computing on hardware accelerators.

Fig. 3 Software & Hardware Stack of OFFLOAD Framework

3.1 Application Layer

The application layer is a crucial component of the software stack, designed to facilitate seamless

interaction between high-level software and underlying data processing frameworks. Here, the

integration of Python, Apache Spark, JDBC, and Apache Arrow creates a robust and efficient

environment for big data processing and analytics.

3.2 Python Development Environment

The application is primarily developed in Python, a versatile and widely-used programming

language known for its simplicity and extensive libraries. Python's rich ecosystem enables rapid

20

development and easy integration with various tools and frameworks essential for big data processing.

In this project, Python serves as the primary language for writing application logic, data manipulation

scripts, and orchestrating data flow between different layers of the stack.

3.3 Apache Spark

Apache Spark is at the heart of the data processing framework in the application layer. Spark is a

powerful open-source big data processing engine that provides an interface for programming entire

clusters with implicit data parallelism and fault tolerance. By running within the Java Virtual Machine

(JVM), Spark can efficiently manage and process large datasets across distributed computing

environments. Key features of Apache Spark include:

Apache Spark significantly enhances data analytics tasks through its in-memory processing

capabilities, which allow data to be processed directly in memory rather than relying on traditional

disk-based methods. This approach dramatically speeds up data processing, reducing the latency

typically associated with reading and writing to disk and enabling faster, more efficient data analytics.

Additionally, Spark's Resilient Distributed Datasets (RDDs) offer a fault-tolerant collection of elements

that can be manipulated and transformed in parallel across a distributed computing environment. This

parallelism not only increases the efficiency of data operations but also ensures reliability and

robustness, as RDDs can recover from failures and continue processing without data loss.

Furthermore, Spark provides powerful tools for interacting with structured data through its SQL

and DataFrame API. Spark SQL enables users to execute SQL queries on large datasets, leveraging the

familiarity and expressive power of SQL for complex data analysis. This integration allows for seamless

querying and data manipulation within the Spark environment. DataFrames, on the other hand, offer a

high-level abstraction for working with tabular data, making it easier to perform operations such as

filtering, aggregation, and joining data. DataFrames provide a user-friendly interface that simplifies data

manipulation tasks while maintaining the performance benefits of Spark's underlying execution engine.

Together, these features make Apache Spark a versatile and powerful platform for big data processing

and analytics.

21

3.4 JDBC Integration

Java Database Connectivity (JDBC) drivers are crucial in establishing a seamless connection

between the Spark application and the MySQL [11], database server, enabling efficient data exchange

and manipulation. JDBC, being a standard API for database interactions, allows the application to

execute SQL queries [12] [13], facilitating the retrieval, manipulation, and storage of data within the

MySQL database using SQL commands. This capability is essential for performing complex data

operations and analyses directly from the Spark [14] environment, leveraging the powerful querying

capabilities of SQL. Additionally, JDBC supports transaction management, ensuring data integrity and

consistency by providing transactional support. This feature allows multiple operations to be executed as

a single unit of work, maintaining the database's reliability and correctness even in the event of failures.

Furthermore, JDBC enhances the application's portability and flexibility through its cross-platform

compatibility, offering a uniform interface for interacting with various database systems. This

standardisation simplifies the integration of the Spark application with different databases, allowing it to

function seamlessly across diverse environments and enhancing its adaptability in various use cases.

Overall, the use of JDBC drivers in connecting Spark with MySQL significantly boosts the application's

functionality, reliability, and versatility in managing and processing large datasets.

3.5 Apache Arrow

Apache Arrow [15] is seamlessly integrated into the application layer to optimise data storage and

distribution for hardware accelerators, significantly enhancing overall performance. Arrow, a

cross-language development platform for in-memory data, is specifically designed to improve the

efficiency of data transfer between different data processing systems. One of the key benefits of using

Apache Arrow is its columnar data format, which is particularly well-suited for analytic workloads. This

format provides efficient data access patterns, reducing the overhead associated with serialisation and

deserialization processes and thereby speeding up data processing tasks. Additionally, Arrow supports

zero-copy reads, allowing data to be shared between systems without the need for additional memory

copies. This capability minimises data movement overhead and enhances processing speed by enabling

direct access to data in its native format. Furthermore, Arrow's interoperability is another significant

advantage, as it supports a wide range of programming languages and frameworks. This broad

compatibility facilitates smooth data exchange between the Python application, Apache Spark, and

hardware accelerators, ensuring that data flows seamlessly across different components of the system.

By leveraging these features, Apache Arrow plays a crucial role in optimising data handling and

22

processing within the application layer, contributing to a more efficient and performance computing

environment.

3.6 Data Preparation and Transfer

Once data is retrieved from the MySQL database and processed by Apache Spark [16][17], it

undergoes further handling to ensure optimal performance in subsequent stages. This processed data is

then divided and transferred to the next layer by sophisticated custom firmware, which acts as a critical

intermediary in the data processing pipeline. The primary role of the custom firmware is to prepare and

optimise the data for efficient handling by the hardware accelerators. To achieve this, the firmware

performs several key functions to ensure the data is in the best possible state for hardware processing.

One of the firmware's essential tasks is data splitting, where it divides the processed data into

smaller, manageable chunks. This division is crucial for distributing the workload evenly across multiple

hardware accelerators, ensuring balanced and efficient processing. Additionally, the firmware takes care

of data formatting, converting the data into a structure and format that the hardware accelerators can

process most effectively. This step minimises the need for additional data transformations at the

hardware level, streamlining the processing pipeline.

Moreover, the firmware applies various optimization techniques to enhance data processing

efficiency. These optimizations might involve data compression, error correction, and other

preprocessing steps that prepare the data for rapid and accurate computation by the hardware

accelerators. By optimising the data, the firmware ensures that the hardware can execute tasks more

quickly and with greater accuracy.

Another crucial function of the custom firmware is metadata management. The firmware manages

and attaches necessary metadata to the data chunks, including information such as data type, size, and

processing instructions. This metadata is essential for the hardware accelerators to execute their tasks

correctly and efficiently, providing the contextual information needed for precise processing.

In summary, the custom firmware plays a pivotal role in the data processing pipeline by preparing

and optimising data for hardware accelerators. Through data splitting, formatting, optimization, and

metadata management, the firmware ensures that data is in the best possible state for efficient and

accurate processing by the hardware accelerators, ultimately enhancing the overall performance of the

system.

23

3.7 Streamlining Subsequent Processing Steps

By performing these intermediary tasks, the custom firmware ensures that the data is meticulously

prepared to achieve an optimal state for efficient handling by the hardware accelerators. This preparation

plays a critical role in streamlining subsequent processing steps, effectively minimising the workload on

the hardware accelerators and maximising their computational efficiency. By optimising the data's

format, structure, and metadata, the firmware enables the hardware accelerators to execute tasks faster

and with greater accuracy. This streamlined approach not only reduces processing time but also

enhances the overall system performance significantly. The well-prepared data facilitates smoother data

flows within the system, ensuring that computational resources are utilised more effectively and

enabling the hardware accelerators to perform complex computations swiftly and reliably. Thus, the

meticulous preparation by the custom firmware contributes directly to improving the system's speed,

accuracy, and overall efficiency in data processing tasks.

3.8 Integration with Hardware Accelerators

The optimised and formatted data is seamlessly transferred to the custom-designed hardware

network, comprising a central accelerator master and multiple accelerator worker devices. Together,

these components efficiently process the data to meet computational demands. The central accelerator

master orchestrates task distribution and data transfer using a shared memory interface, ensuring

efficient communication with individual worker devices. Each worker device, equipped with specialised

firmware, executes assigned tasks using the optimised data prepared by the custom firmware

intermediary.

In summary, the custom firmware serves a crucial role in the data processing pipeline by

meticulously preparing and optimising data for hardware accelerators. Its intermediary functions include

data splitting, formatting, and optimization, which collectively enhance efficiency and streamline

subsequent processing steps. By preparing data to meet hardware requirements, the firmware maximises

system performance, ensuring tasks are executed swiftly and accurately across the hardware network.

This integrated approach optimises resource utilisation and supports seamless data processing within the

system.

24

CHAPTER 4

HARDWARE SETUP

Fig. 4: Hardware Setup Block Diagram

The hardware setup can be visualised through a block diagram where the Master Raspberry Pi

(RPi) acts as the central hub for user interaction and communication. The Master RPi establishes direct

connections to both worker devices using General Purpose Input/Output (GPIO) pins. This allows for

low-level control and data exchange between the Master RPi and the workers. Additionally, the Master

RPi interfaces with external memory through a dedicated Bus Controller. This controller, managed by

the Master RPi, plays a crucial role in managing access to the external memory for the worker devices.

By granting and revoking access privileges, the Bus Controller ensures efficient memory utilisation and

avoids potential conflicts during data operations initiated by the workers. This configuration facilitates a

centralised control structure where the Master RPi coordinates communication and memory access for

the worker devices within the accelerator framework.

25

The hardware setup of the framework can be visualised through a block diagram outlining the

interconnection between its key components. These components include: a Master Raspberry Pi (RPi),

one or more worker Raspberry Pi(s), an SN54HC153 Multiplexer (MUX) acting as the Bus Controller,

and a shared memory module, the AT45DB321E [22].. For stable power distribution throughout the

system, all components share common ground and VCC connections. The Master RPi communicates

with worker-1 using two General Purpose Input/Output (GPIO) pins [23]. GPIO-1 transmits signals

from the Master to worker-1, while GPIO-2 serves as the acknowledgment channel from worker-1 back

to the Master. Following the master-worker paradigm, GPIO-1 is configured as an output pin on the

Master and an input pin on worker-1. Conversely, GPIO-2 acts as an input pin for the Master and an

output pin for worker-1. This communication pattern is replicated for worker-2, utilising GPIO-3 and

GPIO-4 on the Master RPi.

The hardware framework facilitates data transfer between the master device, shared memory, and

worker devices using the SPI protocol. However, to ensure only one device communicates with the

shared memory at a time, a specific connection scheme is employed. Firstly, all MOSI (Master

Output/worker Input) pins from the master, workers, and shared memory are tied together. This

configuration reflects the single master design, where only one master communicates with the shared

memory. Similarly, all MISO (Master Input/worker Output) pins are shorted together, allowing data

transfer between any device and the master. For controlled access to the shared memory, a critical role is

played by the SN54HC153 multiplexer (MUX). The master’s CS (Chip Select) pin connects to input

1C0 of the MUX, while its SCLK (System Clock) connects to 2C0. This establishes the master as the

default device communicating with the shared memory.

26

TABLE I

Table. 1: SN54HC153 Multiplexer Configuration to select Master and worker Devices

However, the framework allows selective access for worker devices. worker-1’s CS pin connects

to input 1C1 of the MUX, while worker-2’s CS pin connects to 1C2. Similarly, worker-2’s SCLK

connects to input 2C2 of the MUX. This configuration empowers the master to control which device

(itself or a worker) interacts with the shared memory. The core concept lies in granting exclusive access

to the shared memory for read/write operations. To achieve this, the shared memory connects to all

devices (master and workers). However, through the MUX, only one device can access it at a time. The

master firmware dictates this access by controlling the A and B pins of the MUX using two GPIO pins.

By default, both A and B pins are LOW (A=0, B=0). This configuration selects the output connected to

C0, effectively connecting the master to the shared memory. When the master sets A to HIGH (A=1)

while keeping B LOW (B=0), the output connected to C1 is selected, granting access to worker-1.

Similarly, setting A to LOW (A=0) and B to HIGH (B=1) routes the shared memory connection to

worker-2. This design ensures controlled and efficient communication between the master, shared

memory, and worker devices within the SPI framework.

27

Fig. 5: Actual Hardware Setup

28

CHAPTER 5

HARDWARE NETWORK AND TASK DISTRIBUTION

5.1 Custom-Designed Hardware Network

After the data has been optimally prepared by the custom firmware, it undergoes transfer down the

software stack to a sophisticated, custom-designed hardware network meticulously engineered for

high-performance computing tasks. This specialised hardware network is crafted to operate efficiently

and effectively under rigorous computational demands. It integrates advanced components such as a

central accelerator master and multiple accelerator worker devices, each equipped with specialised

firmware tailored for rapid and precise data processing. The network's design emphasises high

throughput and low latency, crucial for handling intensive computing tasks with optimal efficiency. This

architecture ensures that the prepared data flows seamlessly through the hardware network, leveraging

its capabilities to maximise overall system performance and support complex computational operations

reliably.

5.2 Shared Memory Device Driver Interface

Central to the functionality of the hardware network is its shared memory device driver interface, a

critical component enabling seamless communication between the central accelerator master and

multiple accelerator worker devices. This interface facilitates high-speed data transfer, optimising the

movement of data between the master and worker devices to minimise delays and eliminate bottlenecks

in the system. Moreover, the shared memory device driver interface supports concurrent access,

enabling multiple devices to access shared memory simultaneously. This capability enhances the

hardware network's efficiency by facilitating parallel processing and coordinated execution of tasks

across the worker devices, ensuring that computational resources are fully utilised and contributing to

overall system performance.

5.3 Central Accelerator Master

At the core of the hardware network lies the central accelerator master, a pivotal device that directs

the entire data processing workflow using the shared memory interface to coordinate and distribute tasks

effectively. One of its primary functions is task distribution, where the master device decomposes

intricate processing tasks into smaller, more manageable units. These units are subsequently allocated to

individual accelerator worker devices for execution, optimising workload distribution and enhancing

29

overall efficiency. Additionally, the central accelerator master manages data allocation by assigning

prepared data chunks to the respective worker devices. This allocation ensures that each device receives

the necessary data required for its specific tasks, facilitating synchronised processing and minimising

latency in data handling. By overseeing task distribution and data allocation through the shared memory

interface, the central accelerator master plays a critical role in optimising resource utilisation and

maintaining robust performance across the hardware network.

5.4 Accelerator worker Devices

The accelerator worker devices form the backbone of the hardware network, each equipped with

specialised firmware meticulously crafted to execute specific computational tasks with efficiency and

precision. These devices receive tasks and data from the central accelerator master through the shared

memory interface and operate concurrently to maximise system throughput. Key features of the

accelerator worker devices include optimised computation capabilities achieved through tailored

firmware designed to fully leverage the hardware's computational resources. This optimization ensures

rapid and accurate processing of data, crucial for handling complex computational tasks effectively.

Moreover, the worker devices support parallel processing, allowing multiple devices to operate

simultaneously on different parts of the workload. This parallelism significantly enhances the overall

processing speed and throughput of the hardware network, enabling it to tackle large-scale computations

swiftly and efficiently. By combining optimised computation with robust parallel processing

capabilities, the accelerator worker devices contribute to the high-performance and scalability of the

hardware network, meeting demanding computational requirements with efficiency and reliability.

5.5 Coordinated Processing

The interaction between the central accelerator master and the accelerator worker devices is a

meticulously orchestrated process critical to the smooth operation of the hardware network. The master

device maintains constant vigilance over the progress of each worker device, actively monitoring their

performance and workload. This oversight enables the master to dynamically reallocate tasks and data as

needed, ensuring that processing remains balanced and efficient across the network. By continually

optimising task distribution and data allocation, this coordinated approach maximises the hardware

network's capability to handle extensive data processing tasks swiftly and seamlessly. This systematic

management not only enhances operational efficiency but also guarantees that the hardware network

operates at its peak potential, delivering reliable and high-performance computing solutions for

demanding computational requirements.

30

5.6 Integration and Optimization

The seamless integration of Apache Spark, Apache Arrow, and custom firmware with a

sophisticated hardware network culminates in a highly efficient and scalable system for distributed

computing on hardware accelerators. This multi-faceted approach is meticulously designed to ensure

rapid and precise data processing, leveraging both advanced software capabilities and powerful

hardware optimizations to deliver exceptional performance.

5.7 Apache Spark Integration

Apache Spark occupies a pivotal role within the system, serving as a robust framework designed

for large-scale data processing. Its capability to execute computations in-memory brings significant

acceleration to data processing tasks, bypassing traditional disk-based limitations. Spark integrates

seamlessly into the system by first retrieving large datasets from the MySQL database with efficiency

and then conducting initial data preprocessing tasks. This initial stage establishes a foundation for

subsequent processing steps by leveraging Spark's capabilities in managing extensive data

transformations and conducting complex analyses. Furthermore, Spark enhances processing speed and

efficiency through its support for parallel processing, enabled by resilient distributed datasets (RDDs)

and DataFrame APIs. These features empower the system to distribute tasks across multiple computing

nodes concurrently, optimising resource utilisation and accelerating overall data processing. By

harnessing Spark's robust functionalities, the system achieves heightened performance and scalability,

effectively meeting the demands of rigorous data processing tasks in diverse computational

environments.

5.8 Apache Arrow Optimization

Apache Arrow significantly enhances the performance of the system by optimising both data

storage and transfer mechanisms. One key feature is Arrow's adoption of a columnar data format, which

ensures that data is stored in a highly efficient manner. This format facilitates faster access and

manipulation of data, particularly beneficial for analytic workloads and processing by hardware

accelerators. The columnar storage organises data by columns rather than rows, reducing the overhead

associated with accessing and processing large datasets. Additionally, Arrow supports zero-copy reads, a

capability that minimises data movement overhead within the system. This feature enables components

to share data directly without duplicating it unnecessarily, enhancing overall system efficiency and

reducing latency. By integrating Apache Arrow into the system architecture, these optimizations

31

contribute to accelerated data processing speeds and improved performance, making it well-suited for

handling complex computational tasks and large-scale data analytics with heightened efficiency.

5.9 Custom Firmware's Role

The custom firmware serves as a critical intermediary within the system, playing a pivotal role in

preparing and optimising data specifically tailored for the hardware accelerators. Its primary function

includes comprehensive data preparation, where the firmware divides, formats, and optimises data to

ensure it is in an optimal state for efficient hardware processing. This preparation phase is crucial as it

maximises the effectiveness and performance capabilities of the hardware accelerators, enabling them to

process tasks swiftly and accurately. Additionally, the firmware excels in task coordination by

facilitating seamless data transfer to the hardware network. It manages the distribution of tasks across

the network, ensuring each hardware component receives the necessary data in an optimised format to

perform its designated functions effectively. By orchestrating these critical tasks, the custom firmware

plays a key role in enhancing overall system efficiency, streamlining data processing workflows, and

maximising the utilisation of hardware resources within the system architecture.

5.10 Hardware Network Efficiency

The custom-designed hardware network, featuring a central accelerator master and multiple

accelerator worker devices, is meticulously engineered to deliver peak performance within the system

architecture. At its core, the network utilises a shared memory interface that facilitates high-speed

communication and efficient data transfer between the central accelerator master and the worker

devices. This interface plays a crucial role in enabling seamless task distribution and execution across

the network, optimising resource utilisation and minimising latency.

Parallel processing is another cornerstone of the hardware network's design, where multiple

worker devices operate concurrently to execute tasks in parallel. This parallelism significantly enhances

the overall processing speed of the system, allowing it to handle complex computations and large-scale

data processing tasks with heightened efficiency.

The integration of these advanced components results in a system renowned for its superior

performance capabilities. Scalability is a key feature, as the system is designed to effortlessly

accommodate growing data volumes and computational demands without compromising on

32

performance. This scalability ensures that the system can adapt to evolving needs and expand its

capabilities as required.

Moreover, the system excels in efficiency by leveraging the synergies between software and

hardware components. By harnessing the strengths of both domains, the system achieves exceptional

performance levels, seamlessly navigating through intricate data processing tasks while maintaining

high levels of accuracy and reliability. This integrated approach underscores the system's ability to

deliver robust performance across diverse computing environments, making it a reliable choice for

demanding applications in data-intensive industries.

33

CHAPTER 6

SOFTWARE & FIRMWARE IMPLEMENTATION

The project codebase has been released as open-source on GitHub [24]. It is organised within a

folder named "bist," signifying Built-In Self-Test [25]. This folder contains the source code modules that

comprise the system. The initial development of the bist module targeted the creation of a

Proof-of-Concept (POC) test suite. This test suite facilitates comprehensive integrated testing between

various system components including the Master Raspberry Pi (RPi), worker Raspberry Pis (RPis),

External Shared Memory module, and Shared Bus controller interface.

Fig 6: Firmware Layers

The AT45DB321E.py module serves as the driver component, encapsulating the commands

responsible for read, write, and erase operations on the external shared memory module. It also includes

all associated routines pertinent to these operations. Notably, the AT45DB321E.py module resides on

both the Master and worker RPis. This ensures consistency in how memory operations are handled

34

across the different devices in the network.

The bist_master.py module functions as the entry point for the accelerator network. It furnishes

the interface for receiving user queries from the host system. The execution of this module is initiated

using the command python bist_master.py. It plays a crucial role in managing the overall

workflow and communication between the user interface and the accelerator network.

The bist_worker.py module resides on each worker RPi within the system. Its execution is

invoked using the command python bist_worker.py --worker worker_NUMBER. The

specific configuration for each worker RPi is established within this module by parsing the

ext_mem_config.json file. This allows each worker device to be uniquely configured and managed

within the network, ensuring that they can process their allocated tasks effectively.

The gpio.py module is accountable for managing the GPIO (General Purpose Input/Output)

configurations for both the Master and worker RPis. Proper configuration of GPIO pins is essential for

facilitating communication and control signals between the Master and worker devices.

The ext_mem_config.json configuration file is present on both Master and worker RPis. It stores

the JSON formatted configuration details for all worker RPis, including the designated input and output

regions within the shared memory allocated to each worker RPi. For example:

{

"worker_1_INPUT_ADDR" : 0,

"worker_2_INPUT_ADDR" : 65536,

"worker_1_OUTPUT_ADDR" : 131072,

"worker_2_OUTPUT_ADDR" : 196608

}

This configuration ensures that each worker has a defined memory space for input and output

operations, facilitating orderly and conflict-free data processing.

The query_handler.py module executes the routines tasked with parsing SQL queries and

subsequently distributing these parsed queries to the worker RPis within the system. This module is

crucial for translating user queries into actionable tasks that the accelerator network can process.

35

Fig. 7: Code-base folder structure

The sn54hc153_mux.py module serves as the bus controller component utilised by the Master

RPi to govern access to the shared memory by all worker RPis. This module ensures that memory access

is coordinated and controlled, preventing data conflicts and ensuring smooth operation of the system.

The host subfolder within the bist folder constitutes the direct user interface. The host system can

reside on a cloud platform, a personal computer, or a big data server. This subfolder encompasses the

modules that interact with the user, the database, and retrieves queries to be processed by the accelerator

network.

The covid-config.json configuration file specifies the details for connecting to the MySQL

database server, including the connector driver information, username, and password. This configuration

file ensures that the system can securely and effectively connect to the database to retrieve and process

data.

The main.py module represents the user-level application that leverages Apache Spark. It is

responsible for receiving user queries and delivering them to the Master node within the accelerator

network. This module is essential for integrating big data processing capabilities into the system,

ensuring that large datasets can be efficiently managed and processed.

Finally, the mysql-connector-java-8.0.23.jar file comprises the JDBC driver, a software

component that permits Apache Spark to establish a connection to the MySQL database server [26].

This driver is necessary for facilitating communication between Spark and the database, enabling

seamless data retrieval and processing.

36

CHAPTER 7

RESULTS

The OFFLOAD framework’s design prioritises simplicity and generality. This strategic approach

enables effortless porting across various architectures, eliminating limitations imposed by fixed

instruction set architectures. As a result, the framework presents itself as a valuable tool applicable to

big data analytics tasks within heterogeneous computing environments.

Fig. 8:Demonstration of query handling from host to distributed accelerator network

To achieve accelerated and parallel processing within the distributed accelerator network, query

handling occurs primarily at three distinct levels.

7.1 Host Side

The Host entirely handles queries or part of queries involving data retrieval from the database. For

instance, consider the query SELECT SUM (Weekly_Gain_First) FROM covid_summary, as shown

in Figure 8. In this query, SELECT specifies data retrieval, SUM indicates the summation operation of

37

the (Weekly_Gain_First) column, and FROM covid_summary identifies the specific table in the

database from which the data to be fetched. The Host processes this query, accesses the database, and

retrieves the requested data (in this case covid_summary table) before passing it to subsequent stages for

further processing or analysis within the accelerator network.

7.2 Controller Side

Once the requested table is retrieved from the database, it is transmitted to the Controller

Raspberry Pi (RPi) via a standard communication protocol like TCP/IP network. The Controller

analyses the query to determine the specific columns (in this case Weekly_Gain_First) and operations

(SUM) required, then identifies the appropriate Worker RPi for the task based on the configuration file.

The Controller divides the table into smaller, manageable chunks, taking into account the number of

Worker RPis connected to the network. To optimise processing, it employs a column-based splitting

strategy using Apache Arrow, which efficiently stores the data in Parquet format, as shown in Figure 8.

This method organises the data by columns, enhancing accessibility for parallel processing. After

converting Manuscript submitted to ACM the data into Parquet files, the Controller copies these files

into designated shared memory locations, ensuring each Worker has access to the necessary data.

Finally, the Controller signals the Workers that the data is ready for processing, initiating the distributed

computing tasks.

Fig. 9: Master dividing query into subqueries for offloading to workers

7.3Worker Side

The Worker RPis handle queries or portions of queries involving data processing. They start the

process by reading input data from designated locations in the shared memory. Each Worker RPi then

38

performs the specified operation, such as summing the data from the designated column

(Weekly_Gain_First), as shown in Figure 8. After processing, the Worker writes the results back to the

assigned output memory location and signals the Controller upon completion. Once all Workers have

acknowledged completion, the Controller retrieves the results, aggregates them, and transmits the final

outcome back to the Host via the network, completing the query execution.

7.4 Timing Analysis

To demonstrate the efficacy of our framework, we have segmented the entire workflow into

distinct sections and measured timing values for each, as detailed in Table 1. Key timings include:

● GPIO Initialization Time: GPIO initialization time represents the duration to initialize the

GPIO pins of Raspberry Pi, a one-time activity crucial for setting up the system. Our

measurements show that GPIO pin initialization on the Raspberry Pi takes 36,489,587

nanoseconds using the OFFLOAD framework.

● Memory Initialization Time: Memory initialization indicates the time necessary to set up the

shared memory, another one-time process essential for the system’s proper functioning. This

setup ensures that all components can communicate efficiently and access shared memory as

required. For the OFFLOAD framework, memory initialization takes just 92,711

nanoseconds.

● Writing to Memory: This measures the time needed to write sample data into shared

memory. This operation, although performed once, benefits from an efficient block writing

mechanism, ensuring that the time does not increase linearly with data size. For our

prototype, writing to memory consumes only 136,723 nanoseconds.

● Bus Controller Time: Bus Controller Time refers to the duration required by the RPi

controller node to hand over the control of shared memory to RPi worker nodes for

processing. This hand-off, essential for each query, ensures that worker nodes can access the

memory needed for their tasks. In the OFFLOAD framework, this process takes 19,111

nanoseconds per query.

● GPIO De-initialization Time: This refers to the time needed to safely reset and clear the

GPIO hardware, releasing resources and preparing the system for shutdown or

reconfiguration. As a one-time finalization step, it completes the necessary hardware

disengagement. In the OFFLOAD framework, GPIO de-initialization takes 1,061,017

nanoseconds.

● Memory De-initialization Time: Memory de-initialization represents the time required to

39

fully reset and disengage the shared memory hardware setup, ensuring that all resources are

released and the system is properly concluded. This process is essential to finalize operations

and prepare the system for shutdown or future adjustments. For the OFFLOAD framework,

this de-initialization takes 67,259 nanoseconds, marking the end of memory-related

activities.

● Acknowledge Workers: This reflects the time required by the controller node to assign and

communicate specific tasks to the worker nodes, a crucial step that must be performed for

every query to ensure that each worker knows its role in the processing operation. This

coordination process ensures that the distributed computing tasks are efficiently managed

across the network. In the context of the OFFLOAD framework, this task assignment

process takes 29,111 nanoseconds for each query.

TABLE 2

Table 2. Timing Values Collected from the framework

Based on the analysis of our framework, we have formulated the total time equation as a sum of

initialization time and processing time. The equations are defined as follows:

40

Here, 𝑇Initialization represents the total initialization time, which is a one-time overhead and

includes the time taken for GPIO initialization, memory initialization, GPIO de-initialization, memory

de-initialization, and memory write operations. 𝑇Processing per Query denotes the time taken for each

query, involving the bus controller time and the time to acknowledge worker nodes. Finally, 𝑇Total is

the total time, which includes both the initialization time and the processing time per query, distributed

across 𝑁𝑆 worker nodes, for 𝑁𝑄 queries. To visualize the efficiency and scalability of our framework,

we conducted a predictive analysis as depicted in Figure 9. In this analysis, the initialization time

remains constant at 37.85 ms, while the processing times vary according to the number of queries and

the number of worker nodes. For example, with 4 worker nodes, the total processing time for 10,000

queries is 158.40 ms. This time significantly reduces to 39.73 ms when the number of worker nodes is

increased to 256 for the same number of queries. As the number of worker nodes increases, the

processing time decreases significantly, highlighting the framework’s capability to effectively manage

and distribute workloads.

7.5 Comparisons

OFFLOAD stands out as a device-agnostic framework, distinguishing itself from Fletcher and TaPaSCo.

One of its key strengths lies in its ability to support a variety of devices seamlessly, compared to the

FPGA-centric nature of Fletcher and TaPaSCo. While Fletcher and TaPaSCo rely on FPGA toolchains

and are limited to FPGA devices, OFFLOAD operates on memory-mapped I/O, ensuring compatibility

with a broader spectrum of hardware. Moreover, OFFLOAD offers flexibility in task partitioning

strategies through its custom driver, enabling integration with custom architectures—an advantage

unavailable in Fletcher and TaPaSCo. This adaptability empowers developers to tailor their systems

precisely to their needs, maximizing performance and efficiency

41

Fig. 10. Predictive Analysis of Processing Time vs. Number of Worker Nodes

As shown in Table 3, OFFLOAD excels with its simple and straightforward syntax, making it more

accessible compared to the complex structures of Fletcher and TaPaSCo. This simplicity lowers the

learning curve, allowing developers to optimize performance without relying on complex compiler

configurations. OFFLOAD also offers high modularity, enabling parallel task distribution, unlike the

more monolithic or limited approaches of Fletcher and TaPaSCo. Its high portability further enhances its

adaptability across various platforms, a significant advantage over Fletcher’s lower and TaPaSCo’s

moderate portability. OFFLOAD’s open-source nature fosters collaboration and eliminates the financial

barriers associated with proprietary FPGA tool-chains, as seen with Fletcher and TaPaSCo. This

flexibility, combined with its seamless integration with widely used tools like Apache Spark, Apache

Arrow, MySQL, and Python, positions OFFLOAD as a versatile solution for big data and AI tasks. This

broad applicability makes OFFLOAD particularly well-suited for heterogeneous computing

environments, providing a comprehensive and user-friendly alternative to device-constrained

frameworks like Fletcher and TaPaSCo.

42

In summary, the results demonstrate that the OFFLOAD framework, with its flexible design and

efficient use of hardware and software resources, is well-suited for big data analytics tasks in

heterogeneous computing environments. The ability to effortlessly port the framework across different

architectures further enhances its applicability, making it a valuable tool for a wide range of data

processing applications.

TABLE 3

Feature OFFLOAD Fletcher [7] TaPaSCo [8]
Syntax Simple Complex Complex

Modularity High Low Moderate
Task Distribution Parallel Monolithic Parallel

Platform Generic Only FPGAs Only FPGAs
Standard Libraries Limited Extensive Limited

Memory Managemen Firmware User Kernel
Exception Handling Firmware Operating System Kernel
Compiler Support Not Needed Yes Yes

Portability High Low Moderate
Need for Standard IS No Yes Yes

Apache Spark Yes Yes No
Apache Arrow Yes Yes No

MySQL Yes No No
Python Yes Yes No

Table 3. Comparison of OFFLOAD with other Frameworks

Furthermore, OFFLOAD’s emphasis on simplicity and ease of use is evident in its streamlined

syntax and compiler-independent nature. Unlike Fletcher and TaPaSCo, which require specific compiler

configurations, OFFLOAD simplifies the development process by eliminating such dependencies. This

simplification reduces the learning curve for developers and speeds up the implementation of new

features and functionalities.

Additionally, OFFLOAD’s high portability makes it exceptionally adaptable across diverse

environments, enhancing its versatility and usability. Its seamless integration with popular tools such as

Apache Spark, Apache Arrow, MySQL, and Python further underscores its suitability for a wide range

43

of applications, particularly in big data and AI tasks. By leveraging these widely-used technologies,

OFFLOAD can be easily incorporated into existing workflows, providing a powerful and flexible

solution for complex data processing challenges.

44

CHAPTER 8

CONCLUSION

The OFFLOAD framework represents a pioneering approach in the realm of offloading

compute-intensive tasks to a variety of hardware. In this paper, we have meticulously detailed the

framework and its core aspects, encompassing everything from data source and application coupling to

binary instruction and data generation. We have validated the framework's efficacy by demonstrating

hardware task offloading for MySQL database queries. Our demonstration utilised Apache Spark and

Apache Arrow in Python, two of the most popular tools for database management and dataset

de-segmentation.

On the hardware side, Raspberry Pis were employed to exemplify heterogeneous hardware

configurations, showcasing the framework's compatibility with diverse devices. The task offloading

process was centralised through memory-mapped I/O, ensuring efficient data transfer and processing.

This methodology underscores the framework's versatility and flexibility, making it adaptable to a wide

range of hardware environments.

The scalability and open-source nature of the OFFLOAD framework are pivotal in paving the way

for easier adoption of emerging machine learning and data analytics hardware. By providing a robust,

flexible, and scalable solution, OFFLOAD offers significant potential to enhance performance in big

data analytics tasks within heterogeneous computing environments. This framework not only simplifies

the integration of various hardware accelerators but also fosters innovation and collaboration within the

community, setting the stage for future advancements in compute task offloading and hardware

integration.

45

REFERENCES

[1] K. Neshatpour, A. Sasan and H. Homayoun, ”Big data analytics on heterogeneous accelerator
architectures,” 2016 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Pittsburgh, PA, USA, 2016, pp. 1-3. keywords: Acceleration;Field programmable gate
arrays;Hardware;Big data;Energy efficiency;Accelerator architectures.

[2] Peccerillo, Biagio, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini. ”A survey on
hardware accelerators: Taxonomy, trends, challenges, and perspectives.” Journal of Systems
Architecture 129 (2022): 102561.

[3] Kimm, H., Paik, I. and Kimm, H., 2021, December. Performance comparision of tpu, gpu, cpu
on google colaboratory over distributed deep learning. In 2021 IEEE 14th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (pp. 312-319). IEEE.

[4] Abts, D., Kim, J., Kimmell, G., Boyd, M., Kang, K., Parmar, S., Ling, A., Bitar, A., Ahmed, I.
and Ross, J., 2022, August. The groq software-defined scale-out tensor streaming multiprocessor: From
chipsto-systems architectural overview. In 2022 IEEE Hot Chips 34 Symposium (HCS) (pp. 1-69). IEEE
Computer Society.

[5] Emani, M., Vishwanath, V., Adams, C., Papka, M.E., Stevens, R., Florescu, L., Jairath, S., Liu,
W., Nama, T. and Sujeeth, A., 2021. Accelerating scientific applications with sambanova reconfigurable
dataflow architecture. Computing in Science Engineering, 23(2), pp.114-119.

[6] Zong, Z., Ge, R. and Gu, Q., 2017. Marcher: A heterogeneous system supporting energy-aware
high performance computing and big data analytics. Big data research, 8, pp.27-38.

[7] Peltenburg, Johan, Jeroen van Straten, Matthijs Brobbel, Zaid Al-Ars, and H. Peter Hofstee.
”Generating high-performance fpga accelerator designs for big data analytics with fletcher and apache
arrow.” Journal of Signal Processing Systems 93 (2021): 565-586.

[8] Heinz, Carsten, Jaco Hofmann, Jens Korinth, Lukas Sommer, Lukas Weber, and Andreas
Koch. ”The TaPaSCo Open-Source Toolflow: for the Automated Composition of Task-Based Parallel
Reconfigurable Computing Systems.” Journal of Signal Processing Systems 93 (2021): 545-563.

[9] Mittal, Sparsh, and Jeffrey S. Vetter. ”A survey of CPU-GPU heterogeneous computing
techniques.” ACM Computing Surveys (CSUR) 47, no. 4 (2015): 1-35.

[10] S. Wang, A. Prakash and T. Mitra, ”Software Support for Heterogeneous Computing,” 2018
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 2018, pp. 756-762,
doi: 10.1109/ISVLSI.2018.00142. keywords: Graphics processing units;Field programmable gate
arrays;Kernel;Parallel processing;Computer architecture;Heterogeneous computing, scheduler, compiler,
power/thermal management.

46

[11] Pereira, A.L., Raoufi, M. and Frost, J.C., 2012. Using MySQL and JDBC in new teaching
methods for undergraduate database systems courses. In Data Engineering and Management: Second
International Conference, ICDEM 2010, Tiruchirappalli, India, July 29-31, 2010. Revised Selected
Papers (pp. 245-248). Springer Berlin Heidelberg.

[12] Gupta, Anand, Hardeo Kumar Thakur, Ritvik Shrivastava, Pulkit Kumar, and Sreyashi Nag.
”A big data analysis framework using apache spark and deep learning.” In 2017 IEEE international
conference on data mining workshops (ICDMW), pp. 9-16. IEEE, 2017.

[13] Borthakur, D., 2008. HDFS architecture guide. Hadoop apache project, 53(1-13), p.2.

[14] Chebotko, A., Kashlev, A. and Lu, S., 2015, June. A big data modeling methodology for
Apache Cassandra. In 2015 IEEE International Congress on Big Data (pp. 238-245). IEEE.

[15] van Leeuwen, Lars TJ, Zaid Al-Ars, and H. Peter Hofstee. ”Fletcher: A Framework to
Efficiently Integrate FPGA Accelerators with Apache Arrow.”

[16] Gould, C., Su, Z. and Devanbu, P., 2004, May. JDBC checker: A static analysis tool for
SQL/JDBC applications. In Proceedings. 26th International Conference on Software Engineering (pp.
697-698). IEEE.

[17] Hildebrandt, Juliana, Dirk Habich, and Wolfgang Lehner. ”Integrating Lightweight
Compression Capabilities into Apache Arrow.” In DATA, pp. 55-66. 2020.

[18] Upton, E. and Halfacree, G., 2016. Raspberry Pi user guide. John Wiley Sons.

[19] Leens, F., 2009. An introduction to I 2 C and SPI protocols. IEEE Instrumentation
Measurement Magazine, 12(1), pp.8-13.

[20] Peltenburg, J., Van Leeuwen, L.T., Hoozemans, J., Fang, J., Al-Ars, Z. and Hofstee, H.P.,
2020, December. Battling the CPU bottleneck in apache parquet to arrow conversion using FPGA. In
2020 international conference on Field-Programmable technology (ICFPT) (pp. 281-286). IEEE.

[21] Bender, M., Kirdan, E., Pahl, M.O. and Carle, G., 2021, January. Open-source mqtt
evaluation. In 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC)
(pp. 1-4). IEEE.

[22] Bez, R., Camerlenghi, E., Modelli, A. and Visconti, A., 2003. Introduction to flash memory.
Proceedings of the IEEE, 91(4), pp.489-502.

[23] Cicolani, J. and Cicolani, J., 2018. Raspberry pi gpio. Beginning Robotics with Raspberry Pi
and Arduino: Using Python and OpenCV, pp.103-128.

47

[24] Source code of the project in https://github.com/saiakula997/lab518.git

[25] Agrawal, V.D., Kime, C.R. and Saluja, K.K., 1993. A tutorial on built-in self-test. I.
Principles. IEEE Design Test of Computers, 10(1), pp.73-82.

[26] Silva, Yasin N., Isadora Almeida, and Michell Queiroz. (2016). ”SQL: From traditional
databases to big data.” In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, pp. 413-418.

VITA

Satya Sai Siva Rama Krishna Akula, a native of India, holds a Bachelor of Technology degree in

Electrical and Electronics Engineering, which he obtained in 2018 from Gudlavalleru Engineering

College, affiliated with Jawaharlal Nehru Technological University, Kakinada, India. Following his

undergraduate studies, he gained significant professional experience as a firmware engineer at

Qualcomm and Sasken Technologies, where he focused on embedded systems firmware

development, contributing to various high-impact projects.

Currently, Mr. Akula is pursuing a Master’s degree at the School of Computing and Engineering,

University of Missouri-Kansas City. His academic work is centered around his master's thesis,

OFFLOAD: An Open-source Framework for Distributing Big Data and AI Tasks to Heterogeneous

Compute Units, which aims to address the challenges of distributing computational workloads across

48

https://github.com/saiakula997/lab518.git

diverse processing units in big data and artificial intelligence applications. Through this research, he

seeks to advance the field of distributed computing by developing open-source solutions that

leverage heterogeneous computing environments.

49

