
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Recent advancements in Artificial Intelligence (AI)

algorithms have sparked a race to enhance hardware capabilities

for accelerated task processing. While significant strides have

been made, particularly in areas like computer vision, the

progress of AI algorithms appears to have outpaced hardware

development, as specialized hardware struggles to keep up with

the ever-expanding algorithmic landscape. To address this gap,

we propose the development of a messaging-based intelligent

processing unit (m-IPU) capable of runtime configuration to

cater to various AI tasks. Central to this hardware is a

programmable interconnection mechanism, relying on message

passing between compute elements termed Sites. We illustrate the

efficacy of m-IPU by implementing matrix multiplication and

convolution operations, showcasing lower latency compared to

current systolic array-based matrix multipliers. Our

experiments, conducted on the TSMC 28nm technology node,

reveal minimal power consumption of 44.5 mW with 94200 cells

utilization. For 3D convolution operations on (32 X 128) images,

each (256 X 256), using a (3 X 3) filter and 4096 Sites at a

frequency of 100 MHz, m-IPU achieves processing in just 503.3

milliseconds. These results underscore the potential of m-IPU as

a unified, scalable, and high-performance hardware architecture

tailored for future AI applications.

Index Terms—Machine Learning, Hardware Accelerator,

Matrix Multiplication, Convolution, Reconfigurable Computing.

I. INTRODUCTION

he advent of Artificial intelligence (AI), particularly Deep

Neural Networks (DNNs) has prompted a paradigm shift

in various fields such as computer vision, natural language

processing, robotics, and many more. As a result, modern tech

industries are aggressively integrating advanced neural

network architectures like AlexNet [1], VGGNet [2],

GoogLeNet [3], ResNet [4], LSTM [5], GRU [6], transformers

[7] and others in hardware to uplift customer experience and

maintain competitive differentiation. However, to materialize

the full potential of AI, the underlying hardware architectures

needs to be endowed with enhanced computational power to

embrace sophisticated AI algorithms and complex neural

network architectures [8][9]. The hardware performance of AI

applications heavily depends on handling of matrix

multiplication operations efficiently as these operations are

central to representing neural networks [10][11]. Therefore,

the research fraternity has put tremendous efforts in

developing cutting-edge hardware accelerators like GPU [12],

TPU [13], MEISSA [14], SpArch [15], MatRaptor [16] for

efficient implementation of computationally intensive tasks.

However, these existing architectures offer advantages in

specific use-cases while overlooking requirements of other use

cases. For instance, architectures like SpArch and MatRaptor

are useful in applications like Amazon co-purchase network

[17] where the network is highly sparse. Similarly, MEISSA is

beneficial over TPU in edge devices such as autonomous

drone [18] providing less latency whereas TPU shows

superiority in applications that necessitates high throughput

like data centers. The application-centric nature of these

hardware architectures, coupled with their lack of

programmability may lead to suboptimal performance while

deploying diverse set of implementations considering the

evolving landscape of AI algorithms. This necessitates the

development of adaptable hardware architectures at runtime

along with the innovation of novel computing technology to

effectuate neural network operations [19]. Reconfigurable

computing, compared to conventional architectures, holds

significant promise to suit specific needs of varying

applications optimizing computing resources [20]. Hence,

several reconfigurable circuits like memristor-based

reconfigurable circuit [21], fine-grained polymorphic circuit

[22], noise-based configurable computing [23], crosstalk built-

in memory [24] have been introduced to enhance the

computational capabilities. Despite their versatility in

Messaging-based Intelligent Processing Unit

(m-IPU) for next generation AI computing

Md. Rownak Hossain Chowdhury and Mostafizur Rahman, Senior Member, IEEE

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

developing custom circuits, these reconfigurable architectures

pose significant deficiencies when applied for machine

learning or data analytics tasks. Therefore, we need a new

class of reconfigurable architecture for computationally

intensive tasks to map various matrix and manipulate matrix

multiplications.

In this work, we introduce a new programmable hardware

architecture to address the challenges called Messaging-based

Intelligence Processing Unit (m-IPU). The configurability of

m-IPU is rooted in its flexible interconnections that enables

runtime mapping and processing of vast data volumes

inherently via a message passing scheme without host

processor intervention. In addition, the processing computing

and memory elements are distributed and parallel in nature to

facilitate fast computation. Due to these salient features, our

evaluation results indicate significant performance advantages.

Key contributions of this paper are as follows:

• Details of a new hardware accelerator architecture for

computation intensive data analytics and AI applications.

• Details of application mapping to m-IPU architecture.

• Technology evaluation results at TSMC 28nm technology

node.

• Throughput and latency comparison results against other

prominent architectures.

The organization of the paper is as follows: Section II

provides high level overview of m-IPU interfacing, example

use cases such as matrix multiplication and convolutions,

Section III elaborates on the technology validation using

TSMC 28nm technology and highlights performance for key

design metrics such as resource utilization, power profile,

latency, and throughput, and provides a comparative analysis,

and finally, Section IV concludes the paper and discusses

future work.

II. M-IPU ARCHITECTURE

Messaging based Intelligent Processing Unit (m-IPU) is a

reconfigurable computing architecture whose computing and

memory elements are parallel and distributed. The cornerstone

of our programmable hardware architecture is flexible virtual

interconnections, which is pivotal for integrating messaging-

based intelligence and thereby enabling efficient information

processing. The proposed interconnect configuration is

analogous to message passing in a human chain. For instance,

if there are 5 people in a line and they want to pass messages

from person #1 (Source) to person #5 (Destination), then

persons #2, #3, and #4 form a virtual link between source and

destination in that message passing scheme. This source,

destination-based message passing scheme can be applied to

computing cores as well.

Figure 1 A) System Overview B) Message Encoding Scheme C) Instruction Set Architecture of m-IPU.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

A system level overview of the m-IPU is depicted in Figure

1(A). Here, a host CPU is required (like GPUs and other

accelerators) to interpret high-level language (e.g., C, Python,

etc.) and translate them into messages that m-IPU can operate

upon and collect outputs form the m-IPU. Inside the m-IPU all

communication between computing elements are performed

through messages. The encoding scheme of a 64-bit message

in m-IPU is shown in Figure 1 (B). A message can be

segmented into 5 parts: a) Present Opcode (from bit position 0

to 3), b) Present Destination (from bit position 4 to 15), c)

Values to be stored / operated (from bit position 16 to 47), d)

Next Opcode (from bit position 48 to 51), and e) Next

Destination (from bit position 52 to 63). In this framework,

messages are routed to the desired hardware unit within the m-

IPU based on the Present Destination, where an operation is

performed on the value embedded in the message according to

the Present Opcode. Subsequently, the Next Opcode and Next

Destination specified in the message are retained inside the m-

IPU to generate new message. To program m-IPU on-the-fly,

we developed a lightweight instruction set architecture (ISA)

as shown in Fig. 1(C) comprising only 10 instructions.

A. Hardware Details

The m-IPU follows a modular and hierarchical design

approach enabling it to be scalable irrespective of data size or

model complexity. The construction and segmentation of the

m-IPU architecture is outlined in Figure 2 (A-E). Inside the m-

IPU engine, there is an array of Quads. A Quad is a collection

of 4 Blocks, and a Block is a collection of 16 Tiles. Each Tile

consists of 16 SiteMs and each SiteM incorporates 16 SiteOs.

The Quads, Blocks, Tiles, and SiteMs hierarchy allows task

distribution and parallel computing. The SiteOs are the core

elements and are analogous to Threads of GPUs or the

Processing Elements (PEs) of TPUs. SiteOs are organized in

rows and columns and the programmable interconnections

between SiteOs allows the messages to be routed any cores. A

SiteM collects all these messages and outputs 12 messages (4

for its own Tile, 4 for other Tiles within the same row, and 4

for different columns/Blocks) at a time. Like SiteMs

organization in a Tile, a collection of Tiles is called Blocks.

The Blocks communicate with each other through local and

global buses. Each block also contains distributed embedded

memory elements to store further instructions.

The hardware architecture of SiteO as shown in Figure 2(D)

mainly comprises floating point unit (FPU), FIFO, decoder,

counter, and register. Associated with each SiteO there is a

small 8-word memory buffer to store the next set of

instructions. The SiteOs also contain SRAMs to store weights.

The SiteOs execute 32-bit IEEE 754 arithmetic operations,

such as addition, multiplication, and subtraction, utilizing the

Floating-Point Unit (FPU). SiteOs can receive messages either

from the top or the left direction and they release outputs

either at the right or the bottom direction. They are also aware

of their neighbors (i.e., addresses of neighbor SiteOs in right,

left, up, and down are stored in each SiteO). There are 2

FIFOs (Left and Top) to store incoming messages and push

them towards execution or exit route in a pipelined manner. If

the FIFOs are empty, the turnout time for in and out for a

message is 1 cycle. If the FIFOs are full, the senders are sent a

full signal to stop sending. The phase when stationary values

are first loaded is called programming.

When a message arrives at SiteO, it first checks whether the

destination of the message is its address, and if it matches,

then the message is decoded and the instruction embedded

Figure 2 Details of A) m-IPU architecture B) Tile C) SiteM D) SiteO E) Hierarchy.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

within the message is executed, otherwise, the message is

passed on. After decoding a message, a SiteO can perform

either message streaming or message forwarding. Streaming

and forwarding are two different tasks; in the case of

streaming, the SiteO receiving the message send it to its

preferred neighbor by updating the message, whereas, in

forwarding, the SiteO just behaves as a buffer to pass

messages without intervention. Each Site, upon receiving or

generating a message, checks whether the destination is within

the same row or not; if it is, then it sends the message to the

right and to down otherwise. Eventually, through hopping

Sites, a message reaches its destination. If the messages are to

be routed/passed downward, those messages are labeled as

Tile message and if they are passed rightward (within the

same SiteO row), those are labeled as Local messages. To

serve two different purposes such as Data loading and

mathematical operation, m-IPU needs just 10 instructions.

Here, 1 instruction (Prog) is required for loading data inside

m-IPU and the remaining 9 instructions (UPDATE, A_ADD,

A_ADDS, A_SUB, A_SUBS, A_MUL, A_MULS, A_DIV,

A_DIVS) perform mathematical operations.

A SiteM is designed to have 16 SiteOs in rows and

columns. Each column and row of the SiteM is equipped with

four vertical and horizontal buses, respectively. The bus

topology enables messages to be dispatched simultaneously at

multiple SiteO locations rather than hopping thereby

improving latency. This concept can be mimicked and

extended to develop other hierarchical structures like tile,

block, and quad. A Tile can have messages destined to itself

(i.e., coming from within the Tile or outside the Tile), called

Tile messages, and have incoming messages destined for other

Tiles within the same row (called Local messages with respect

to Blocks) and same column (called Block messages).

III. M-IPU COMPUTATION

Matrix multiplication and convolution operations are key

computational kernels in various state-of-the-art AI

applications. Hence, the performance of AI accelerators lies in

the efficient execution of matrix multiplication and

convolution operations. As AI technology advances, the

complexity of neural networks continues to increase. For

example, CNN architectures encompass multiple layers with

varying filter size, padding, and stride to convert input image

volume to output preserving class scores [26]. Ideally, the

convolution operation is a repetitive sliding dot product

according to filter size. However, this conventional approach

requires many operations to be performed; hence, effective

data mapping is parallelly significant along with efficient

hardware architectures to accelerate convolution operations.

Moreover, the performance metrics and data processing

capabilities of convolution operation vary according to the

application. Real-time systems such as autonomous vehicles

[27], smartphones [28], medical devices[29], robotics [30]

necessitates instant decision making based on sensory inputs.

However, due to resource limitations, they are capable of

single-batch processing; hence, the key design parameter in

those applications is latency. On the other hand, applications

like video processing [31], language modeling [32], speech

recognition [33] process multiple batches at the same time; as

a result, requires high throughput. This section will explore

both the matrix multiplication and convolution operations in

m-IPU, catering to the varying needs of these AI applications.

Figure 3 Matrix Multiplication Approach in m-IPU.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

A. Matrix-Matrix Multiplication

The matrix multiplication operation inside m-IPU can be

divided into four steps: a) Data (Matrix A) Load, b) Data

(Matrix B) Load and multiply, c) Addition, and d) Offload.

Figure 3 illustrates a matrix-matrix multiplication example

within m-IPU utilizing a SiteM. Here, the inputs for the matrix

multiplication are Matrix A (4 X 3) and Matrix B (3 X 3).

According to the data mapping indicated in Figure 3, matrix A

will be loaded only once following Map1. After that, each

column of the matrix B will be loaded sequentially according

to Map2, Map3, and Map4. Thus, the matrix multiplication

can be surmised as three (3) matrix-vector multiplication

operations. Therefore, the matrix-vector multiplication

between matrix A and each column of matrix B will be

repeated 3 times in one SiteM. The corresponding result of

each matrix-vector multiplication will be accumulated to

achieve the final output. Alternatively, the intended

multiplication operation can also be completed using 3 SiteM

fabrics of the m-IPU; where, 3 SiteMs will perform 3 matrix-

vector multiplications parallelly in 3 SiteMs. Thus, the matrix-

matrix multiplication can be acquired within the same time of

matrix-vector multiplication using 3 SiteMs. Mathematically,

the number of SiteOs and the latency needed to execute a

matrix-matrix multiplication of Matrix A (N X M) and Matrix

B (M X P) can be calculated using the equation (1) and (2)

respectively.

SiteOMM = {(N X M) + N} X P (1)

TMM = N + P + 2 (2)

B. Convolution Operation

In our method to perform convolution operation, we have

kept the filter values stationery and pixel values are streamed

inside m-IPU according to stride value defined for

convolution. A 2D convolution operation in m-IPU is shown

in Figure 4 utilizing three SiteMs. Here, the convolution

operation is performed for a 5X5 gray scale image using a

3X3 filter and the outcome of the convolution is a 3X3 matrix.

In convolution operation, the image data will be divided into

several data chunks equal to filter size based on convolution

parameters like filter size, padding, and stride. The example

shown in Figure 4 splits the 5 X 5 image data into 9 data

chunks for filter size 3 X 3, padding 0 and stride 1. After

creating those data chunks, the convolution operation can be

surmised as 9 pointwise matrix-matrix multiplication and add

operation where the two inputs are filter and one of the data

chunks. In this case, 3 SiteMs will work parallelly to complete

the 2D convolution where each SiteM will execute 3 pointwise

matrix multiplications according to 3 data maps (red, blue,

yellow). However, in Figure 3, we have only shown mapping

for one portion (red) of the entire data for ease of

demonstration. Here, each SiteM is initially programmed with

a filter row. Subsequently, three data chunks, marked in red,

will be sent to three SiteMs for concurrent multiplication.

After that, the multiplication results of each row will be added

and then the addition result from SiteM1 and SiteM2 will be

forwarded to SiteM3 for final addition. Finally, the

convolution result will be collected from SiteM3 to get the 1st

column of the desired 3 X 3 convolution result.

IV. VALIDATION

A. Methodology

To validate our design, we have developed a digital design

flow based on CAD tools under TSMC 28nm technology

Figure 4 2D Convolution Operation in m-IPU.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

node. Initially, we designed the RTL/behavioral models of m-

IPU and iteratively checked whether the RTL is free from

linting errors and whether the RTL is synthesis friendly.

During the RTL code development, we utilized Xilinx Vivado

platform for initial measurement and simulation. Later, we

followed a digital design flow based on standard

methodologies and CAD tools for implementing the m-IPU

design. We have used a high-performance compact mobile

computing plus (CLN28HPC+) process from TSMC 28nm

commercial PDK with 8 metal layers and supply voltage of

0.9V. Here, the RTL was verified for functional correctness.

We have also performed property checking to verify the RTL

implementation and that the specification matches. After that,

we set the design environment, including the technology file

and other environmental attributes. We have also defined the

design constraints file for synthesis, usually called an SDC

synopsys_constraints or dc_synopsys_setup file, specific to

the synthesis tool. We have defined the environment by

specifying operating conditions, wire load models, and system

interface characteristics. Operating conditions include

temperature, voltage, and process variations. Wire load

models estimate the effect of wire length on design

performance. System interface characteristics include input

drives, input and output loads, and fan-out loads. Since the

environment model directly affects design synthesis results,

we have methodically constrained designs by describing the

design environment, target objectives, and design rules. We

also constrained timing and area information and iteratively

run the synthesis on the design to meet the design

specifications. Once the constraints file is set, we have

provided synthesis inputs to the Cadence Genus. The input

files are the library files (which have the functional/timing

information available for the standard cell library and the wire

load models for the wires based on the fan-out length of the

connectivity), RTL files, and the design constraints files. The

synthesis tool performs the synthesis of the RTL files and

Figure 5 Throughput calculation of 2D and 3D convolution in m-IPU.

Figure 6 Simulation result of Matrix Multiplication between Matrix A (3 X 3) and Matrix B (3 X 3)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

maps and optimizes them to meet the design constraints

requirements. Design optimization constraints define timing

and area optimization goals for Cadence Genus. We specify

these constraints. Genus optimizes the synthesis of the design

by these constraints, but not at the expense of the design rule

constraints. That is, Genus never attempts to violate the

higher-priority design rules. We had to modify the design

constraint several times to meet the design requirements. After

performing the synthesis, we performed functional verification

with the synthesized netlist to confirm that the synthesis tool

has not altered the functionality. The throughput calculation of

both 2D and 3D convolution operations utilizing available

hardware resources is appended in Figure 5. We have

measured the throughput for both 2D (Gray Image) and 3D

(Color Image) convolution and during our observation, we

varied both image and filter sizes. We have considered 32 data

batches where each batch contains 128 images with 100 MHz

clock frequency and 4096 available SiteOs. The padding and

stride are kept 0 and 1 in both cases. For 3D convolution, we

assumed that 64 filters are involved in the convolution

process.

TABLE I

A Summary of Matrix Multiplication Approach between TPU, MEISSA, and m-IPU

TYPE
PROCESSING

ELEMENT

RESOURCE

UTILIZATION

SHAPE
METHOD

DATA LOAD
LATENCY Matrix

A

Matrix

B

Matrix

A

Matrix

B

TPU MAC
Multipliers: N X P

N X M M X P Systolic Array Stored
Left to

Right
N + 2M + P -2

Adders: M X P

MEISSA
Multipliers &
Adder Trees

Multipliers: M X P
N X M M X P Systolic Array Stored

Left to
Right

N + M + P + log (M) -2
Adders: P X (M - 1)

m-IPU SiteO
SiteOs:

{(N X M) + N} X P
N X M M X P

Messaging-

based
Program

Vertical

Bus
N + P + 2

B. Evaluation

To verify our matrix-matrix multiplication approach, we

have simulated our design with numerous values, however, a

matrix-matrix multiplication between matrix A (3X3) and

matrix B (3X3) is appended in Figure 6 for demonstrating our

matrix-matrix multiplication process. Here, 9 messages are

sent initially at 3 different steps to program 9 SiteOs with

matrix A. In this stage, data reaches respective SiteOs through

hopping. After that, each column of matrix B is passed to the

m-IPU using vertical bus for multiplication. Once the

multiplication is finished, results are sent to the desired SiteO

for addition. This process is repeated until all columns are

transferred and finally results are collected.

Figure 7 Comparison of the total time steps for matrix multiplication when A) n varies from 2 to 2048, m = 128, p =

128, B) m varies from 2 to 2048, n = 128, and p =128, and c) p varies from 2 to 2048, n = 128, m = 128.

Figure 8 Throughput calculation of 2D convolution varying A) Image Size B) Filter Size

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Table I summarizes the key characteristics including

processing element, resource utilization, latency of matrix

multiplication approaches between matrix A (N X M) and

matrix B (M X P) in three different hardware accelerators

(TPU, MEISSA, m-IPU). Both TPU and MEISSA utilize

systolic array to perform matrix multiplication whereas our

design incorporates messaging-based intelligent dataflow

mechanism to program hardware at run-time. The latency of

our matrix-matrix multiplication unit has been observed

varying different (rows and columns) dimensions of matrix A

and matrix B. Figure 7 (A), (B), and (C) represents the

comparison of latency among MEISSA, TPU, and our design

by varying N, M, and P individually from 4 to 2048 keeping

other two parameters constant (128). In all cases, m-IPU

outperforms the remaining two state-of-the art matrix

multiplication architectures.

Table II

m-IPU (SiteM) Design parameters

Technology TSMC 28nm

Process HPC+

Metal Layer 1P8M

Voltage (VDD) 0.9V (nominal)

Package Wire Bond

Frequency 100 MHz

Power (mW)
Leakage Dynamic Total

0.42 44.08 44.5

Cell Count
Sequential Inverter Logic Total

25692 4203 64305 94200

Besides, we evaluate power consumption and resource

utilization under TSMC 28nm technology to demonstrate our

architecture’s efficiency. The key design parameters of the m-

IPU architecture are listed in Table II that indicates the design

consumes only 44.08 mW dynamic power at 0.9V operating

voltage. The low dynamic power consumption suggests our

design’s efficient task partitioning at runtime due to intelligent

programmability and effective data mapping. Moreover,

messages are loaded only from one direction (Top) and after

multiplication the SiteOs transfer data through horizontal bus;

as a result, m-IPU involves less signal transmission at runtime.

Next, we identify an effective data mapping strategy to

accomplish faster convolution operation with less hardware

resources. Finally, we benchmark our design by calculating

throughput for multi-batch convolution operation. Figure 8(A)

represents throughput varying image sizes from (128 X 128)

to (1024 X 1024) maintaining a fixed filter size of (3 X 3) for

2D convolution. On the other hand, figure 8(B) highlights

throughput for 2D convolution for different filter sizes (from 3

X 3 to 11 X 11) while keeping a fixed image dimension of

(256 X 256). Our methodology completes 2D convolution

operation of (32 X 128) images of size (1024 X 1024) with a

filter of size (3 X 3) utilizing 4096 SiteOs and 100 MHz

frequency within just 702.5 milliseconds. Again, the time

required to execute a 2D convolution operation for (32 X 128)

images of dimension (256 X 256) using a (11 X 11) filter

keeping the other parameters unchanged is only 49.2

milliseconds. Similarly, figure 9 (A) and 9 (B) demonstrate the

throughput for 3D convolution varying image and filter size

respectively.

V. CONCLUSION & FUTURE WORK

The trend of deploying machine learning and deep learning

algorithms in widespread applications necessitates an efficient

hardware accelerator for executing matrix multiplication

operation within a limited hardware budget. To do so,

developing a unified hardware architecture that features

reconfigurability, low-power, low-latency, and high-

throughput is essential. In this work, we presented an

innovative messaging-based computing paradigm that

inherently programs hardware units at runtime. In addition to

this, we proposed a matrix multiplication mapping scheme that

outperforms existing systolic array-based matrix

multiplication architectures such as TPU and MEISSA. Our

design has been validated through simulations under TSMC

Figure 4 Throughput calculation of 3D convolution varying A) Image Size B) Filter Size

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

28nm technology. We have also established a methodology to

benchmark convolution operation utilizing available hardware

resources and achieved high throughput. The impressive

performance on both latency and throughput, combined with

the novel computing technology of the m-IPU, indicates its

unique position for the next generation AI applications. Our

future work will involve a more thorough evaluation of m-IPU

performance using software-hardware based emulations, m-

IPU chip fabrication and demonstration of a software

framework for application offloading.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, May 2012

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” Computer Vision and Pattern
Recognition, Sep. 2014.

[3] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 2015, pp. 1-9.

[4] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
[6] Chung, Junyoung, et al. “Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling.” ArXiv.org, 2014,

arxiv.org/abs/1412.3555.
[7] A. Vaswani et al., “Attention Is All You Need,” arXiv.org, Jun. 12,

2017. https://arxiv.org/abs/1706.03762.

[8] P. Dhilleswararao, S. Boppu, M. S. Manikandan and L. R.
Cenkeramaddi, "Efficient Hardware Architectures for Accelerating Deep

Neural Networks: Survey," in IEEE Access, vol. 10, pp. 131788-131828,

2022.
[9] L. R. Juracy, A. M. Amory and F. G. Moraes, "A Comprehensive

Evaluation of Convolutional Hardware Accelerators," in IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3,
pp. 1149-1153, March 2023.

[10] S. Hadjis, F. Abuzaid, C. Zhang, and C. Re, “Caffe con troll: Shallow

ideas to speed up deep learning,” in Proceedings of the Fourth
Workshop on Data analytics in the Cloud. ACM, 2015, p. 2.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B.

Catanzaro, and E. Shelhamer, “Cudnn: Efficient primitives for deep
learning,” arXiv preprint arXiv:1410.0759, 2014.

[12] W. J. Dally, S. W. Keckler and D. B. Kirk, "Evolution of the Graphics

Processing Unit (GPU)," in IEEE Micro, vol. 41, no. 6, pp. 42-51, 1
Nov.-Dec. 2021.

[13] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor

processing unit," 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, pp.

1-12, 2017

[14] B. Asgari, R. Hadidi and H. Kim, "MEISSA: Multiplying Matrices
Efficiently in a Scalable Systolic Architecture," 2020 IEEE 38th

International Conference on Computer Design (ICCD), Hartford, CT,

USA, pp. 130-137, 2020
[15] Z. Zhang, H. Wang, S. Han and W. Dally, "SpArch: Efficient

Architecture for Sparse Matrix Multiplication," in 2020 IEEE

International Symposium on High Performance Computer Architecture
(HPCA), San Diego, CA, USA, pp. 261-274, 2020.

[16] N. Srivastava, H. Jin, J. Liu, D. Albonesi and Z. Zhang, "MatRaptor: A
Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise

Product," 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Athens, Greece, pp. 766-780, 2020.
[17] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The Dynamics of

Viral Marketing,” Trans. on the Web (TWEB), 2007.

[18] Autel, Autel X-Star Quadcopter, 2020 (accessed March 15, 2024).
[Online]. Available: https://www.autelrobotics.com/x-star-camera-

drone.

[19] P. Holzinger and M. Reichenbach, "The HERA Methodology:
Reconfigurable Logic in General-Purpose Computing," in IEEE Access,

vol. 9, pp. 147212-147236, 2021.

[20] R. Tessier, K. Pocek and A. DeHon, "Reconfigurable Computing

Architectures," in Proceedings of the IEEE, vol. 103, no. 3, pp. 332-354,

March 2015.
[21] H. Xiao, X. Hu, T. Gao, Y. Zhou, S. Duan and Y. Chen, "Efficient Low-

Bit Neural Network With Memristor-Based Reconfigurable Circuits,"

in IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
71, no. 1, pp. 66-70, Jan. 2024.

[22] Md Arif Iqbal, Srinivas Rahul Sapireddy, S. Dasari, Kazi Asifuzzaman,

and M. Rahman, “A review of crosstalk polymorphic circuits and their
scalability,” Memories - Materials Devices Circuits and Systems, vol. 7,

pp. 100094–100094, Apr. 2024

[23] N. K. Macha, B. T. Repalle, M. A. Iqbal and M. Rahman, "Crosstalk-
Computing-Based Gate-Level Reconfigurable Circuits," in IEEE

Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 30,

no. 8, pp. 1073-1083, Aug. 2022
[24] P. Samant, Naveen Kumar Macha, and M. Rahman, “A Neoteric

Approach for Logic with Embedded Memory Leveraging Crosstalk

Computing,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 19, no. 1, pp. 1–16, Dec. 2022

[25] M. Rahman, A. Iqbal, and S. Rahul, “A Messaging based Intelligent

Computing Approach for Machine Learning Applications.” Accessed:
Mar. 20, 2024. [Online]. Available: https://computing-lab.com/wp-

content/uploads/2022/02/m-IPU-v1.pdf

[26] T. Wiatowski and H. Bölcskei, "A Mathematical Theory of Deep
Convolutional Neural Networks for Feature Extraction," in IEEE

Transactions on Information Theory, vol. 64, no. 3, pp. 1845-1866,

March 2018.
[27] A. Gupta, K. Illanko and X. Fernando, "Object Detection for Connected

and Autonomous Vehicles using CNN with Attention

Mechanism," 2022 IEEE 95th Vehicular Technology Conference:
(VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6.

[28] Y. Li, J. Luo, S. Deng and G. Zhou, "CNN-Based Continuous
Authentication on Smartphones with Conditional Wasserstein

Generative Adversarial Network," in IEEE Internet of Things Journal,

vol. 9, no. 7, pp. 5447-5460, 1 April1, 2022
[29] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural

networks in medical image understanding: a survey,” Evolutionary

Intelligence, vol. 15, Jan. 2021
[30] J. Guo, H. -T. Nguyen, C. Liu and C. C. Cheah, "Convolutional Neural

Network-Based Robot Control for an Eye-in-Hand Camera," in IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 8,
pp. 4764-4775, Aug. 2023

[31] V. Sharma, M. Gupta, A. Kumar, and D. Mishra, "Video Processing

Using Deep Learning Techniques: A Systematic Literature Review,"
in IEEE Access, vol. 9, pp. 139489-139507, 2021.

[32] S. Yang, "Natural Language Processing Based on Convolutional Neural

Network and Semi Supervised Algorithm in Deep Learning," 2022
International Conference on Artificial Intelligence in Everything (AIE),

Lefkosa, Cyprus, 2022, pp. 174-178.

[33] O. Abdel-Hamid, A. -r. Mohamed, H. Jiang, L. Deng, G. Penn and D.
Yu, "Convolutional Neural Networks for Speech Recognition,"

in IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 22, no. 10, pp. 1533-1545, Oct. 2014.

