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Abstract— Recent advancements in Artificial Intelligence (AI) 

algorithms have sparked a race to enhance hardware capabilities 

for accelerated task processing. While significant strides have 

been made, particularly in areas like computer vision, the 

progress of AI algorithms appears to have outpaced hardware 

development, as specialized hardware struggles to keep up with 

the ever-expanding algorithmic landscape. To address this gap, 

we propose the development of a messaging-based intelligent 

processing unit (m-IPU) capable of runtime configuration to 

cater to various AI tasks. Central to this hardware is a 

programmable interconnection mechanism, relying on message 

passing between compute elements termed Sites. We illustrate the 

efficacy of m-IPU by implementing matrix multiplication and 

convolution operations, showcasing lower latency compared to 

current systolic array-based matrix multipliers. Our 

experiments, conducted on the TSMC 28nm technology node, 

reveal minimal power consumption of 44.5 mW with 94200 cells 

utilization. For 3D convolution operations on (32 X 128) images, 

each (256 X 256), using a (3 X 3) filter and 4096 Sites at a 

frequency of 100 MHz, m-IPU achieves processing in just 503.3 

milliseconds. These results underscore the potential of m-IPU as 

a unified, scalable, and high-performance hardware architecture 

tailored for future AI applications. 

 
Index Terms—Machine Learning, Hardware Accelerator, 

Matrix Multiplication, Convolution, Reconfigurable Computing.  

I. INTRODUCTION 

he advent of Artificial intelligence (AI), particularly Deep 

Neural Networks (DNNs) has prompted a paradigm shift 

in various fields such as computer vision, natural language 

processing, robotics, and many more. As a result, modern tech 

industries are aggressively integrating advanced neural 

network architectures like AlexNet [1], VGGNet [2], 

GoogLeNet [3], ResNet [4], LSTM [5], GRU [6], transformers 

[7] and others in hardware to uplift customer experience and 

maintain competitive differentiation. However, to materialize 

the full potential of AI, the underlying hardware architectures 

needs to be endowed with enhanced computational power to 

embrace sophisticated AI algorithms and complex neural 

network architectures [8][9]. The hardware performance of AI 

applications heavily depends on handling of matrix 

multiplication operations efficiently as these operations are 

central to representing neural networks [10][11]. Therefore, 

the research fraternity has put tremendous efforts in 

developing cutting-edge hardware accelerators like GPU [12], 

TPU [13], MEISSA [14], SpArch [15], MatRaptor [16] for 

efficient implementation of computationally intensive tasks. 

However, these existing architectures offer advantages in 

specific use-cases while overlooking requirements of other use 

cases. For instance, architectures like SpArch and MatRaptor 

are useful in applications like Amazon co-purchase network 

[17] where the network is highly sparse. Similarly, MEISSA is 

beneficial over TPU in edge devices such as autonomous 

drone [18] providing less latency whereas TPU shows 

superiority in applications that necessitates high throughput 

like data centers. The application-centric nature of these 

hardware architectures, coupled with their lack of 

programmability may lead to suboptimal performance while 

deploying diverse set of implementations considering the 

evolving landscape of AI algorithms. This necessitates the 

development of adaptable hardware architectures at runtime 

along with the innovation of novel computing technology to 

effectuate neural network operations [19]. Reconfigurable 

computing, compared to conventional architectures, holds 

significant promise to suit specific needs of varying 

applications optimizing computing resources [20].  Hence, 

several reconfigurable circuits like memristor-based 

reconfigurable circuit [21], fine-grained polymorphic circuit 

[22], noise-based configurable computing [23], crosstalk built-

in memory [24] have been introduced to enhance the 

computational capabilities. Despite their versatility in 
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developing custom circuits, these reconfigurable architectures 

pose significant deficiencies when applied for machine 

learning or data analytics tasks. Therefore, we need a new 

class of reconfigurable architecture for computationally 

intensive tasks to map various matrix and manipulate matrix 

multiplications. 

In this work, we introduce a new programmable hardware 

architecture to address the challenges called Messaging-based 

Intelligence Processing Unit (m-IPU). The configurability of 

m-IPU is rooted in its flexible interconnections that enables 

runtime mapping and processing of vast data volumes 

inherently via a message passing scheme without host 

processor intervention. In addition, the processing computing 

and memory elements are distributed and parallel in nature to 

facilitate fast computation. Due to these salient features, our 

evaluation results indicate significant performance advantages. 

Key contributions of this paper are as follows: 

• Details of a new hardware accelerator architecture for 

computation intensive data analytics and AI applications. 

• Details of application mapping to m-IPU architecture. 

• Technology evaluation results at TSMC 28nm technology 

node.  

• Throughput and latency comparison results against other 

prominent architectures. 

The organization of the paper is as follows: Section II 

provides high level overview of m-IPU interfacing, example 

use cases such as matrix multiplication and convolutions, 

Section III elaborates on the technology validation using 

TSMC 28nm technology and highlights performance for key 

design metrics such as resource utilization, power profile, 

latency, and throughput, and provides a comparative analysis, 

and finally, Section IV concludes the paper and discusses 

future work. 

II. M-IPU ARCHITECTURE 

Messaging based Intelligent Processing Unit (m-IPU) is a 

reconfigurable computing architecture whose computing and 

memory elements are parallel and distributed. The cornerstone 

of our programmable hardware architecture is flexible virtual 

interconnections, which is pivotal for integrating messaging-

based intelligence and thereby enabling efficient information 

processing. The proposed interconnect configuration is 

analogous to message passing in a human chain. For instance, 

if there are 5 people in a line and they want to pass messages 

from person #1 (Source) to person #5 (Destination), then 

persons #2, #3, and #4 form a virtual link between source and 

destination in that message passing scheme. This source, 

destination-based message passing scheme can be applied to 

computing cores as well.  

 
Figure 1 A) System Overview B) Message Encoding Scheme C) Instruction Set Architecture of m-IPU. 
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A system level overview of the m-IPU is depicted in Figure 

1(A). Here, a host CPU is required (like GPUs and other 

accelerators) to interpret high-level language (e.g., C, Python, 

etc.) and translate them into messages that m-IPU can operate 

upon and collect outputs form the m-IPU. Inside the m-IPU all 

communication between computing elements are performed 

through messages. The encoding scheme of a 64-bit message 

in m-IPU is shown in Figure 1 (B). A message can be 

segmented into 5 parts: a) Present Opcode (from bit position 0 

to 3), b) Present Destination (from bit position 4 to 15), c) 

Values to be stored / operated (from bit position 16 to 47), d) 

Next Opcode (from bit position 48 to 51), and e) Next 

Destination (from bit position 52 to 63). In this framework, 

messages are routed to the desired hardware unit within the m-

IPU based on the Present Destination, where an operation is 

performed on the value embedded in the message according to 

the Present Opcode. Subsequently, the Next Opcode and Next 

Destination specified in the message are retained inside the m-

IPU to generate new message. To program m-IPU on-the-fly, 

we developed a lightweight instruction set architecture (ISA) 

as shown in Fig. 1(C) comprising only 10 instructions. 

A. Hardware Details 

The m-IPU follows a modular and hierarchical design 

approach enabling it to be scalable irrespective of data size or 

model complexity. The construction and segmentation of the 

m-IPU architecture is outlined in Figure 2 (A-E). Inside the m-

IPU engine, there is an array of Quads. A Quad is a collection 

of 4 Blocks, and a Block is a collection of 16 Tiles. Each Tile 

consists of 16 SiteMs and each SiteM incorporates 16 SiteOs. 

The Quads, Blocks, Tiles, and SiteMs hierarchy allows task 

distribution and parallel computing. The SiteOs are the core 

elements and are analogous to Threads of GPUs or the 

Processing Elements (PEs) of TPUs. SiteOs are organized in 

rows and columns and the programmable interconnections 

between SiteOs allows the messages to be routed any cores. A 

SiteM collects all these messages and outputs 12 messages (4 

for its own Tile, 4 for other Tiles within the same row, and 4 

for different columns/Blocks) at a time. Like SiteMs 

organization in a Tile, a collection of Tiles is called Blocks. 

The Blocks communicate with each other through local and 

global buses.  Each block also contains distributed embedded 

memory elements to store further instructions.  

The hardware architecture of SiteO as shown in Figure 2(D) 

mainly comprises floating point unit (FPU), FIFO, decoder, 

counter, and register. Associated with each SiteO there is a 

small 8-word memory buffer to store the next set of 

instructions. The SiteOs also contain SRAMs to store weights. 

The SiteOs execute 32-bit IEEE 754 arithmetic operations, 

such as addition, multiplication, and subtraction, utilizing the 

Floating-Point Unit (FPU). SiteOs can receive messages either 

from the top or the left direction and they release outputs 

either at the right or the bottom direction. They are also aware 

of their neighbors (i.e., addresses of neighbor SiteOs in right, 

left, up, and down are stored in each SiteO). There are 2 

FIFOs (Left and Top) to store incoming messages and push 

them towards execution or exit route in a pipelined manner. If 

the FIFOs are empty, the turnout time for in and out for a 

message is 1 cycle. If the FIFOs are full, the senders are sent a 

full signal to stop sending. The phase when stationary values 

are first loaded is called programming.  

When a message arrives at SiteO, it first checks whether the 

destination of the message is its address, and if it matches, 

then the message is decoded and the instruction embedded 

 
Figure 2 Details of A) m-IPU architecture B) Tile C) SiteM D) SiteO E) Hierarchy. 
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within the message is executed, otherwise, the message is 

passed on. After decoding a message, a SiteO can perform 

either message streaming or message forwarding. Streaming 

and forwarding are two different tasks; in the case of 

streaming, the SiteO receiving the message send it to its 

preferred neighbor by updating the message, whereas, in 

forwarding, the SiteO just behaves as a buffer to pass 

messages without intervention. Each Site, upon receiving or 

generating a message, checks whether the destination is within 

the same row or not; if it is, then it sends the message to the 

right and to down otherwise. Eventually, through hopping 

Sites, a message reaches its destination. If the messages are to 

be routed/passed downward, those messages are labeled as 

Tile message and if they are passed rightward (within the 

same SiteO row), those are labeled as Local messages. To 

serve two different purposes such as Data loading and 

mathematical operation, m-IPU needs just 10 instructions. 

Here, 1 instruction (Prog) is required for loading data inside 

m-IPU and the remaining 9 instructions (UPDATE, A_ADD, 

A_ADDS, A_SUB, A_SUBS, A_MUL, A_MULS, A_DIV, 

A_DIVS) perform mathematical operations. 

A SiteM is designed to have 16 SiteOs in rows and 

columns. Each column and row of the SiteM is equipped with 

four vertical and horizontal buses, respectively. The bus 

topology enables messages to be dispatched simultaneously at 

multiple SiteO locations rather than hopping thereby 

improving latency. This concept can be mimicked and 

extended to develop other hierarchical structures like tile, 

block, and quad. A Tile can have messages destined to itself 

(i.e., coming from within the Tile or outside the Tile), called 

Tile messages, and have incoming messages destined for other 

Tiles within the same row (called Local messages with respect 

to Blocks) and same column (called Block messages).  

III. M-IPU COMPUTATION 

Matrix multiplication and convolution operations are key 

computational kernels in various state-of-the-art AI 

applications. Hence, the performance of AI accelerators lies in 

the efficient execution of matrix multiplication and 

convolution operations. As AI technology advances, the 

complexity of neural networks continues to increase. For 

example, CNN architectures encompass multiple layers with 

varying filter size, padding, and stride to convert input image 

volume to output preserving class scores [26]. Ideally, the 

convolution operation is a repetitive sliding dot product 

according to filter size. However, this conventional approach 

requires many operations to be performed; hence, effective 

data mapping is parallelly significant along with efficient 

hardware architectures to accelerate convolution operations. 

Moreover, the performance metrics and data processing 

capabilities of convolution operation vary according to the 

application. Real-time systems such as autonomous vehicles 

[27], smartphones [28], medical devices[29], robotics [30] 

necessitates instant decision making based on sensory inputs. 

However, due to resource limitations, they are capable of 

single-batch processing; hence, the key design parameter in 

those applications is latency. On the other hand, applications 

like video processing [31], language modeling [32], speech 

recognition [33] process multiple batches at the same time; as 

a result, requires high throughput. This section will explore 

both the matrix multiplication and convolution operations in 

m-IPU, catering to the varying needs of these AI applications. 

 
Figure 3 Matrix Multiplication Approach in m-IPU. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

A. Matrix-Matrix Multiplication 

The matrix multiplication operation inside m-IPU can be 

divided into four steps: a) Data (Matrix A) Load, b) Data 

(Matrix B) Load and multiply, c) Addition, and d) Offload. 

Figure 3 illustrates a matrix-matrix multiplication example 

within m-IPU utilizing a SiteM. Here, the inputs for the matrix 

multiplication are Matrix A (4 X 3) and Matrix B (3 X 3). 

According to the data mapping indicated in Figure 3, matrix A 

will be loaded only once following Map1. After that, each 

column of the matrix B will be loaded sequentially according 

to Map2, Map3, and Map4. Thus, the matrix multiplication 

can be surmised as three (3) matrix-vector multiplication 

operations. Therefore, the matrix-vector multiplication 

between matrix A and each column of matrix B will be 

repeated 3 times in one SiteM. The corresponding result of 

each matrix-vector multiplication will be accumulated to 

achieve the final output. Alternatively, the intended 

multiplication operation can also be completed using 3 SiteM 

fabrics of the m-IPU; where, 3 SiteMs will perform 3 matrix-

vector multiplications parallelly in 3 SiteMs. Thus, the matrix-

matrix multiplication can be acquired within the same time of 

matrix-vector multiplication using 3 SiteMs. Mathematically, 

the number of SiteOs and the latency needed to execute a 

matrix-matrix multiplication of Matrix A (N X M) and Matrix 

B (M X P) can be calculated using the equation (1) and (2) 

respectively.  

 
SiteOMM = {(N X M) + N} X P (1) 

TMM = N + P + 2 (2) 

 

B. Convolution Operation 

In our method to perform convolution operation, we have 

kept the filter values stationery and pixel values are streamed 

inside m-IPU according to stride value defined for 

convolution. A 2D convolution operation in m-IPU is shown 

in Figure 4 utilizing three SiteMs. Here, the convolution 

operation is performed for a 5X5 gray scale image using a 

3X3 filter and the outcome of the convolution is a 3X3 matrix. 

In convolution operation, the image data will be divided into 

several data chunks equal to filter size based on convolution 

parameters like filter size, padding, and stride. The example 

shown in Figure 4 splits the 5 X 5 image data into 9 data 

chunks for filter size 3 X 3, padding 0 and stride 1. After 

creating those data chunks, the convolution operation can be 

surmised as 9 pointwise matrix-matrix multiplication and add 

operation where the two inputs are filter and one of the data 

chunks. In this case, 3 SiteMs will work parallelly to complete 

the 2D convolution where each SiteM will execute 3 pointwise 

matrix multiplications according to 3 data maps (red, blue, 

yellow). However, in Figure 3, we have only shown mapping 

for one portion (red) of the entire data for ease of 

demonstration. Here, each SiteM is initially programmed with 

a filter row. Subsequently, three data chunks, marked in red, 

will be sent to three SiteMs for concurrent multiplication. 

After that, the multiplication results of each row will be added 

and then the addition result from SiteM1 and SiteM2 will be 

forwarded to SiteM3 for final addition. Finally, the 

convolution result will be collected from SiteM3 to get the 1st 

column of the desired 3 X 3 convolution result.  

IV. VALIDATION 

A. Methodology 

To validate our design, we have developed a digital design 

flow based on CAD tools under TSMC 28nm technology 

 
Figure 4 2D Convolution Operation in m-IPU. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

node. Initially, we designed the RTL/behavioral models of m-

IPU and iteratively checked whether the RTL is free from 

linting errors and whether the RTL is synthesis friendly. 

During the RTL code development, we utilized Xilinx Vivado 

platform for initial measurement and simulation. Later, we 

followed a digital design flow based on standard 

methodologies and CAD tools for implementing the m-IPU 

design. We have used a high-performance compact mobile 

computing plus (CLN28HPC+) process from TSMC 28nm 

commercial PDK with 8 metal layers and supply voltage of 

0.9V. Here, the RTL was verified for functional correctness. 

We have also performed property checking to verify the RTL 

implementation and that the specification matches. After that, 

we set the design environment, including the technology file 

and other environmental attributes. We have also defined the 

design constraints file for synthesis, usually called an SDC 

synopsys_constraints or dc_synopsys_setup file, specific to 

the synthesis tool. We have defined the environment by 

specifying operating conditions, wire load models, and system 

interface characteristics. Operating conditions include 

temperature, voltage, and process variations. Wire load 

models estimate the effect of wire length on design 

performance. System interface characteristics include input 

drives, input and output loads, and fan-out loads. Since the 

environment model directly affects design synthesis results, 

we have methodically constrained designs by describing the 

design environment, target objectives, and design rules. We 

also constrained timing and area information and iteratively 

run the synthesis on the design to meet the design 

specifications. Once the constraints file is set, we have 

provided synthesis inputs to the Cadence Genus. The input 

files are the library files (which have the functional/timing 

information available for the standard cell library and the wire 

load models for the wires based on the fan-out length of the 

connectivity), RTL files, and the design constraints files. The 

synthesis tool performs the synthesis of the RTL files and 

 
Figure 5 Throughput calculation of 2D and 3D convolution in m-IPU. 

 
Figure 6 Simulation result of Matrix Multiplication between Matrix A (3 X 3) and Matrix B (3 X 3) 
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maps and optimizes them to meet the design constraints 

requirements. Design optimization constraints define timing 

and area optimization goals for Cadence Genus. We specify 

these constraints. Genus optimizes the synthesis of the design 

by these constraints, but not at the expense of the design rule 

constraints. That is, Genus never attempts to violate the 

higher-priority design rules. We had to modify the design 

constraint several times to meet the design requirements. After 

performing the synthesis, we performed functional verification 

with the synthesized netlist to confirm that the synthesis tool 

has not altered the functionality. The throughput calculation of 

both 2D and 3D convolution operations utilizing available 

hardware resources is appended in Figure 5. We have 

measured the throughput for both 2D (Gray Image) and 3D 

(Color Image) convolution and during our observation, we 

varied both image and filter sizes. We have considered 32 data 

batches where each batch contains 128 images with 100 MHz 

clock frequency and 4096 available SiteOs. The padding and 

stride are kept 0 and 1 in both cases. For 3D convolution, we 

assumed that 64 filters are involved in the convolution 

process. 

TABLE I 

A Summary of Matrix Multiplication Approach between TPU, MEISSA, and m-IPU  

TYPE 
PROCESSING 

ELEMENT 

RESOURCE 

UTILIZATION 

SHAPE 
METHOD 

DATA LOAD 
LATENCY Matrix 

A 

Matrix 

B 

Matrix 

A 

Matrix 

B 

TPU MAC 
Multipliers: N X P 

N X M M X P Systolic Array Stored 
Left to 

Right 
N + 2M + P -2 

Adders: M X P 

MEISSA 
Multipliers & 
Adder Trees 

Multipliers: M X P 
N X M M X P Systolic Array Stored 

Left to 
Right 

N + M + P + log (M) -2 
Adders: P X (M - 1) 

m-IPU SiteO 
SiteOs: 

{(N X M) + N} X P 
N X M M X P 

Messaging-

based 
Program 

Vertical 

Bus 
N + P + 2 

B. Evaluation 

To verify our matrix-matrix multiplication approach, we 

have simulated our design with numerous values, however, a 

matrix-matrix multiplication between matrix A (3X3) and 

matrix B (3X3) is appended in Figure 6 for demonstrating our 

matrix-matrix multiplication process. Here, 9 messages are 

sent initially at 3 different steps to program 9 SiteOs with 

matrix A. In this stage, data reaches respective SiteOs through 

hopping. After that, each column of matrix B is passed  to the 

m-IPU using vertical bus for multiplication. Once the 

multiplication is finished, results are sent to the desired SiteO 

for addition. This process is repeated until all columns are 

transferred and finally results are collected. 

 
Figure 7 Comparison of the total time steps for matrix multiplication when A) n varies from 2 to 2048, m = 128, p = 

128, B) m varies from 2 to 2048, n = 128, and p =128, and c) p varies from 2 to 2048, n = 128, m = 128. 

 
Figure 8 Throughput calculation of 2D convolution varying A) Image Size B) Filter Size 
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Table I summarizes the key characteristics including 

processing element, resource utilization, latency of matrix 

multiplication approaches between matrix A (N X M) and 

matrix B (M X P) in three different hardware accelerators 

(TPU, MEISSA, m-IPU). Both TPU and MEISSA utilize 

systolic array to perform matrix multiplication whereas our 

design incorporates messaging-based intelligent dataflow 

mechanism to program hardware at run-time.  The latency of 

our matrix-matrix multiplication unit has been observed 

varying different (rows and columns) dimensions of matrix A 

and matrix B. Figure 7 (A), (B), and (C) represents the 

comparison of latency among MEISSA, TPU, and our design 

by varying N, M, and P individually from 4 to 2048 keeping 

other two parameters constant (128). In all cases, m-IPU 

outperforms the remaining two state-of-the art matrix 

multiplication architectures.  

 

Table II 

m-IPU (SiteM) Design parameters 

Technology TSMC 28nm 

Process HPC+ 

Metal Layer 1P8M 

Voltage (VDD) 0.9V (nominal) 

Package Wire Bond 

Frequency 100 MHz 

Power (mW) 
Leakage Dynamic Total 

0.42 44.08 44.5 

Cell Count 
Sequential Inverter Logic Total 

25692 4203 64305 94200 

 

Besides, we evaluate power consumption and resource 

utilization under TSMC 28nm technology to demonstrate our 

architecture’s efficiency. The key design parameters of the m-

IPU architecture are listed in Table II that indicates the design 

consumes only 44.08 mW dynamic power at 0.9V operating 

voltage. The low dynamic power consumption suggests our 

design’s efficient task partitioning at runtime due to intelligent 

programmability and effective data mapping. Moreover, 

messages are loaded only from one direction (Top) and after 

multiplication the SiteOs transfer data through horizontal bus; 

as a result, m-IPU involves less signal transmission at runtime. 

Next, we identify an effective data mapping strategy to 

accomplish faster convolution operation with less hardware 

resources. Finally, we benchmark our design by calculating 

throughput for multi-batch convolution operation. Figure 8(A) 

represents throughput varying image sizes from (128 X 128) 

to (1024 X 1024) maintaining a fixed filter size of (3 X 3) for 

2D convolution. On the other hand, figure 8(B) highlights 

throughput for 2D convolution for different filter sizes (from 3 

X 3 to 11 X 11) while keeping a fixed image dimension of 

(256 X 256). Our methodology completes 2D convolution 

operation of (32 X 128) images of size (1024 X 1024) with a 

filter of size (3 X 3) utilizing 4096 SiteOs and 100 MHz 

frequency within just 702.5 milliseconds. Again, the time 

required to execute a 2D convolution operation for (32 X 128) 

images of dimension (256 X 256) using a (11 X 11) filter 

keeping the other parameters unchanged is only 49.2 

milliseconds. Similarly, figure 9 (A) and 9 (B) demonstrate the 

throughput for 3D convolution varying image and filter size 

respectively.  

V. CONCLUSION & FUTURE WORK 

The trend of deploying machine learning and deep learning 

algorithms in widespread applications necessitates an efficient 

hardware accelerator for executing matrix multiplication 

operation within a limited hardware budget.  To do so, 

developing a unified hardware architecture that features 

reconfigurability, low-power, low-latency, and high-

throughput is essential. In this work, we presented an 

innovative messaging-based computing paradigm that 

inherently programs hardware units at runtime. In addition to 

this, we proposed a matrix multiplication mapping scheme that 

outperforms existing systolic array-based matrix 

multiplication architectures such as TPU and MEISSA.  Our 

design has been validated through simulations under TSMC 

 
Figure 4 Throughput calculation of 3D convolution varying A) Image Size B) Filter Size 
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28nm technology. We have also established a methodology to 

benchmark convolution operation utilizing available hardware 

resources and achieved high throughput. The impressive 

performance on both latency and throughput, combined with 

the novel computing technology of the m-IPU, indicates its 

unique position for the next generation AI applications. Our 

future work will involve a more thorough evaluation of m-IPU 

performance using software-hardware based emulations, m-

IPU chip fabrication and demonstration of a software 

framework for application offloading.  
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