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Abstract— Addressing the growing demands of artificial 

intelligence (AI) and data analysis requires new computing 

approaches. In this paper, we propose a reconfigurable 

hardware accelerator designed specifically for AI and data-

intensive applications. Our architecture features a messaging-

based intelligent computing scheme that allows for dynamic 

programming at runtime using a minimal instruction set. To 

assess our hardware's effectiveness, we conducted a case study 

in TSMC 28nm technology node. The simulation-based study 

involved analyzing a protein network using the 

computationally demanding PageRank algorithm. The results 

demonstrate that our hardware can analyze a 5,000-node 

protein network in just 213.6 milliseconds over 100 iterations, 

all while consuming only 4.1mW of power. These outcomes 

signify the potential of our design to achieve cutting-edge 

performance in next-generation AI applications. 
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I. INTRODUCTION  

The emergence of artificial intelligence and its 
integration in various scientific and engineering applications 
have led to an unprecedented surge in data generation across 
various domains such as bioinformatics, genomics and more. 
This immense data growth has the potential to unfold 

valuable insights to produce data-driven decisions and 
optimize existing process. However, data-intensive tasks 
suffer from various computational challenges to handle vast 
amount of data as manipulating such huge volume of data 
involves intricate algorithm and parallel processing [1]. 
Hence, developing sophisticated hardware architecture 
capable of handling massive data has become a center of 
attention among researchers in both industry and academia. 

Considering the mammoth datasets and their underlying 
complex data mapping, modern data analytic tasks demand 
hardware architectures with agility, scalability, and 
adaptability without sacrificing performance. Consequently, 
several domain-specific hardware accelerators like SpArch 
[2], MatRaptor [3] have been proposed with improved 
dataflow mechanism; however, these designs do not provide 
inherent data processing capabilities that hinders their 
adaptability to variations in data size, model complexity, and 
software frameworks irrespective of applications. Again, 
architecture like MEISSA [4] offers low latency; hence, is 
beneficial in edge devices whereas TPU [5] provides high 
throughput and shows better performance in data centers. 

Given the existing whitespace between the advancement 
in algorithm and the need for efficient hardware to adapt 
these algorithms, researchers are also focusing on improving 
computing technology. Several computing techniques like 

 
Figure 1 (A) Overview and concept of programmable hardware architecture (B) Message encoding scheme (C) 

Instruction Set Architecture (ISA). 

 



fine-grained polymorphic circuit [6], noise-based 
configurable computing [7], crosstalk built-in memory [8] 
have been proposed to improve logic computations. Even 
though these techniques show prospects in circuit 
performance, there is still necessity to develop hardware that 
can be programmed at run-time for AI and data intensive 
tasks. This gap has motivated us to develop a hardware 
architecture that has potential to perform essential operations 
like matrix-vector multiplication with intelligent dataflow 
within minimum time steps.  

In this paper, we propose a novel programmable 
computing technology that revolves around a unique flexible 
virtual interconnection scheme where any computing unit 
can be connected to another at run-time. To facilitate this, we 
developed a lightweight instruction set architecture (ISA) 
that enables transferring values from one processing element 
to another inherently without any additional data processing 
mechanism. Our intelligent processing element resembles 
GPUs and TPUs in terms of streaming, distribution, and 
parallel nature but are distinct in their interconnection 
mechanism and hence efficient data pipelining. Therefore, 
the hardware architecture can handle large amount of data 
with the same efficiency since the reconfiguration and 
computation scheme is not rigid for certain data sizes. 

In short, the key contributions of our design are as 

follows: 

• An innovative computer architecture concept to 
achieve programmability at run-time. 

• A compact instruction set architecture that enables 
intuitive data flow mechanism within hardware 
elements without software intervention. 

• A low-latency matrix-vector multiplication approach 
using reconfigurable hardware structure. 

• Evaluation of our programmable accelerator on 
computation-intensive PageRank algorithm to 
analyze protein network with high throughput. 

 

II. HARDWARE ARCHITECTURE 

A. Programmability 

Our innovation is a programmable computing 
architecture that can be reconfigured at run-time to behave as 
a custom ASIC through interconnection flexibility and, as a 
result, information processing. An analogy of the proposed 
interconnect configurability is shown in Figure 1A (left). If 
we assume that 5 people are standing in a line, and they 
generate and pass messages from left to right in a circular 
manner (#1 sends to #2, #2 sends to #3, and the rightmost 
person, #5, sends its message to #1), then any message from 
anyone can be delivered to anyone in this human chain. For 
example, if #1 generates a message “Hi” intended for #5, it 
passes it to #2, and #2, #3, and #4 keep passing the same 
message to their right until destination #5 is reached. In this 
message passing scheme, #2, #3, and #4 form a virtual link 
between #1 and #5. This source, destination-based message 
passing scheme can be applied to computing cores as well as 
shown in Figure 1A(right). We organize the cores in rows 
and columns and connect them in a manner that messages 
can be communicated between any cores. The cores are very 
light and capable of performing only essential operations like 
programming and arithmetic. A message originating from 
any of the cores in a 16 Core configuration (4 rows and 4 
columns- Figure 1A(right)), goes right or down depending 
on the destination. To configure our proposed hardware unit, 
only messages need to be sent to proper cores which in turn 
sets destination addresses, values, and operations through 
register writes. The message encoding scheme is shown in 
Figure 1B.  A core is capable of both programming and 
arithmetic operations. The opcode values act as guides to 
distinguish between programming and operation. The 
instruction set architecture (ISA) of our programmable 
hardware accelerator is shown in Figure 1C, that comprises 
only 10 instructions. Among these, one instruction (Prog) is 
designated for data loading and the remaining nine 
instructions (UPDATE, A_ADD, A_SUB, A_MUL, A_DIV, 
A_ADDS, A_SUBS, A_MULS, A_DIVS) are allocated for 
various mathematical manipulation. 

 The programmability concept of our proposed hardware 
accelerator is illustrated in Figure 2. Here, we used only four 
instructions and focused solely on a single row of the entire 

 
Figure 2(A) Bitwise segmentation of messages and (B) Illustration of the Concept of programmability utilizing 

hardware resources. 



architecture for ease of demonstration. In this example, six 
messages shown in Figure 2A are provided as inputs to three 
cores (Core0, Core1, Core2) over two separate clock cycles. 
During the initial clock cycle, three messages (M-1, M-2, 
and M-3) are transmitted from the user end. As soon as, 
cores acknowledge these messages, the decoder unit of each 
core analyze the opcode (from bit 0 to 3) and the destination 
location (from bit 4 to 15). In this case, the opcode is “Prog” 
and hence the values (1.1, 1.2, 1.3) embedded in the message 
will be stored in the floating-point unit (FPU) of respective 
cores. Cores also retain the next opcode (from bit 48 to 51) 
and the next destination (from bit 52 to 63) integrated in the 
message. In the next clock cycle, the remaining three 
messages (M-4, M-5, and M-6) are sent. According to the 
opcode (A_MULS) of these messages, it first multiplies 
values (1, 2, 3) contained in the messages with the values 
(1.1, 1.2, 1.3) stored in the respective FPU. The opcode and 
destination are then updated according to the next opcode 
and next destination value stored in the core. Consequently, 
three multiplication results (1.1, 2.4, 3.9) will be streamed 
towards core3 with opcode “A_ADD”, “A_ADD”, and 
“UPDATE” respectively. Thus, core3 updates its value to 
3.9 at first and then performs two consecutive addition 
operations. Finally, it stores 7.9 in core3. 

 

B. Matrix-Vector Multiplication 

The matrix-vector multiplication operation using our 
proposed hardware unit can be divided into four (4) steps: 1) 
Data (Matrix) load 2) Data (Vector) load and multiply and 3) 
Addition and 4) offload. Figure 3 illustrates an example of 
the matrix-vector multiplication between matrix A (4 X 3) 
and vector B (3 X 1), showing the required time steps in each 
stage. Firstly, the entire matrix A is distributed across the 
fabric through hopping. The decoder unit of each core 
decodes the incoming message and programs each core with 
proper values. Upon loading matrix A, the transpose of the 
vector B is transferred leveraging vertical bus, and 
multiplication operations are performed in each core. 

Afterward, the multiplication results are streamed to the 
desired location using horizontal bus, upgrading the message. 
Finally, the matrix-vector multiplication results are stored in 
the last core of each row of the hardware architecture after 
executing addition. 

 Suppose a matrix-vector multiplication takes two inputs: 
a matrix of size (N X M) and a vector of size (M X 1) then 
the number of cores required to store a matrix is (N X M). 
Since the vector has only 1 column, it will not occupy any 
additional cores. Additionally, we need another N number of 
cores to add the multiplication result. Thus, the number of 
cores necessary to perform a matrix-vector multiplication is 
{(N X M) + N}. Here, the matrix will be loaded through 
hopping where each row of the matrix will be transferred one 
by one starting from the last row. Hence, the number of time 
steps required to load a matrix of size (N X M) is N. Then, 
the vector will be sent using vertical bus and it will be 
multiplied with the matrix. This operation will require only 1 
time step because of using vertical bus. Similarly, the 
addition operation will cost 1 time step utilizing horizontal 
bus. Finally, the result will be offloaded that will consume 1 
more step. Thus, the total time steps required for the matrix-
vector multiplication operation is (N + 3). 

III. ACCELERATING PAGERANK ALGORITHM BASED ROTEIN 

NETWORK ANLYSIS LEVERAGING PROPOSED HARDWARE 

 Protein network is an indispensable tool for deciphering 
intricate molecular structures of biological processes; hence, 
analyzing protein networks is a fundamental task in 
biomedical research and drug discovery. However, existing 
protein network datasets are often incomplete and contain 
significant number of false positives [9]. Therefore, 
researchers are actively working on developing 
comprehensive protein network datasets like hu.MAP 2.0, 
HuRI, Y2H, Structure, DroRI etc [10-11].  Although large 
protein networks hold promise to perform rigorous 
inspection and drive innovation, choosing an apt algorithm to 
analyze such extensive network is also crucial. The famous 

 
Figure 3 Matrix-Vector multiplication in our proposed programmable hardware accelerator. 



PageRank algorithm [12], primarily used for Google search 
engine optimization algorithm, has been widely adapted to 
identify key insights about a protein network due to its 
ability to capture both global and local network information 
[13].  

 In protein network analysis applying PageRank 
algorithm, each protein is defined as nodes and the 
connections between proteins are referred to as edges. 
PageRank algorithm iteratively calculates the relative 
importance (page rank) of any protein (node) in the network 

following the equation shown in 4(B). Therefore, interpreting 
data-intensive protein network using PageRank algorithm 
puts forward various computational challenges to handle vast 
amount of data as manipulating such large datasets involves 
multiple iterations and computation expensive operation like 
matrix-vector multiplication. In such scenario, our 
programmable hardware architecture offers a convenient 
solution by accelerating the matrix-vector multiplication 
process.  

 
Figure 4(A) A small portion of large Protein network (B) Time steps required to implement the PageRank 

algorithm using our proposed hardware accelerator (C) Throughput calculation of the PageRank algorithm 

utilizing available resources. 

 
Figure 5 Simulation result of our proposed reconfigurable hardware architecture. 



 To showcase the performance of our programmable 
hardware design, we have segmented the PageRank 
algorithm in several stages and calculated the required time 
steps in every stage over many iterations. Figure 5(B) 
demonstrates the total time steps required to complete one 
iteration of the PageRank algorithm. Here, the multiplication 
between the matrix (H) and the vector (PRn-1) requires N+3 
steps; then, a scalar (d) will be loaded to be multiplied with 
the result of matrix vector multiplication that costs 1 time 
step. After that, the addition and offloading require 2 more 
steps. This process will be repeated several times based on 
the desired accuracy.  Thus, the total time steps necessary for 
n iterations can be presented as: {n X (N+6)}; where, N 
represents number of proteins in the network and n 
represents number of iterations. Based on this concept, the 
throughput of a PageRank algorithm for a large dataset using 
limited hardware resources can be calculated as shown in 
Figure 5(C). 

A. Methodology 

we developed our programmable hardware architecture 
using Verilog and simulated the design in Xilinx Vivado to 
verify the desired functionality of our design. Later, we 
followed a digital design flow based on CAD tools using a 
high-performance compact mobile computing plus 
(CLN28HPC+) process from TSMC 28nm commercial PDK 
with 8 metal layers and supply voltage of 0.9V. We primarily 
focused on demonstrating programmable nature of our 
hardware to validate our novel computing concept and 
measured several design metrics to examine the hardware 
implementation benefits.  Later, we used our computing 
strategy to handle complex operation of PageRank algorithm 
to analyze protein networks and observed throughput with 
increasing network complexity. We have maintained a 
uniform 200 MHz clock frequency in various stages of 
implementation like simulation, synthesis, and performance 
analysis. The simulation result of our proposed hardware 
architecture is depicted in Figure 4. In our testbench, we 
have considered six (6) messages (Left-1, TOP-1 to TOP-5) 
to be sent to our hardware unit. The current address of our 
hardware unit is 5, while the addresses of neighboring 
hardware units are 2 (Top), 9 (Bottom), Left (4), Right (6).  

Here, the opcode and the current destination of the left 
message-1 are “Prog” and “5” respectively; hence, the 
message will be decoded inside the SiteO rather than passing 
it to the right or bottom. On the other hand, the opcode and 
the present location of messages that are sent from the top 
side (TOP-1 to TOP-5) are “Prog” and “9”. Therefore, these 
messages should be routed through the bottom port. The 
expected behavior in terms of programmability is achieved 
which is evident in simulation result shown in Figure 4. A 
single unit of our programmable architecture consumes only 
4.1 mW power under TSMC 28nm technology as reported in 
Table I. 

Table I:  

Design parameters of a single programmable core 

Technology TSMC 28nm 

Process HPC+ 

Metal Layer 1P8M 

Voltage (VDD) 0.9V (nominal) 

Package Wire Bond 

Area 6 mm2 

Power 4.1 mW 

Frequency 200 MHz 

Gate Count ~98000 

 

B. Performance 

The latency of our matrix-vector multiplication process is 
appended in Figure 6 (A). Here, we have varied the number 
of rows (N) of the matrix of size (N X M) from 256 to 8192 
and observed the respective latency. The results indicate that 
the time steps required to complete a matrix-vector 

multiplication is almost equal (N+3  N) to the number of 
rows in the matrix and it is independent of the number of 
columns in the matrix or the vector size.  Figure 6 (B) 
demonstrates the throughput to analyze protein network 
utilizing PageRank algorithm. In this case, we have varied 
the number of proteins in the network from 1000 to 5000 and 
observed required times. For evaluation, we have conducted 
100 iterations utilizing a 200 MHz clock frequency and 
leveraging only 4096 available hardware units. Our proposed 

 
Figure 6(A) Latency calculation of Matrix-Vector multiplication varying rows of Matrix A (B) Throughput 

calculation varying the number of proteins in protein network. 



computing methodology requires just 213.6 milliseconds to 
complete 100 iterations of PageRank algorithm to analyze a 
protein network comprising 5000 proteins.  

IV. CONCLUSION 

We presented a novel configurable hardware architecture 

designed for AI and data-intensive tasks. This architecture 

leverages a flexible interconnection scheme and a parallel 

organization of compute units, making it well-suited for 

large-scale, parallel, computationally intensive tasks. 

Additionally, we introduced the associated instruction set 

architecture (ISA) for programming and operation control. 

To demonstrate the efficacy of our hardware, we presented a 

case study involving a protein network search. Furthermore, 

we validated our design concepts through simulations 

conducted on a TSMC 28nm technology node. We also 

detailed our evaluation methodology and presented 

performance results for running the matrix-vector 

multiplication tasks of the PageRank algorithm within the 

context of protein network search. The combination of our 

innovative runtime-programmable architecture for compute-

intensive tasks and its demonstrably fast performance 

suggests its significant potential for future applications. 
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