
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Accelerating PageRank Algorithmic Tasks with

mIPU
Md Rownak Hossain Chowdhury, Mostafizur Rahman

Division of Energy, Matters and Systems, Uuniversity of Missouri-Kansas City (UMKC)

Kansas City, MO, US

{rhctmc, rahmanmo} @umkc.edu

Abstract— Addressing the growing demands of artificial

intelligence (AI) and data analysis requires new computing

approaches. In this paper, we propose a reconfigurable

hardware accelerator designed specifically for AI and data-

intensive applications. Our architecture features a messaging-

based intelligent computing scheme that allows for dynamic

programming at runtime using a minimal instruction set. To

assess our hardware's effectiveness, we conducted a case study

in TSMC 28nm technology node. The simulation-based study

involved analyzing a protein network using the

computationally demanding PageRank algorithm. The results

demonstrate that our hardware can analyze a 5,000-node

protein network in just 213.6 milliseconds over 100 iterations,

all while consuming only 4.1mW of power. These outcomes

signify the potential of our design to achieve cutting-edge

performance in next-generation AI applications.

Keywords— Reconfigurable Computing, Hardware

Accelerator, Artificial Intelligence, PageRank Algorithm

I. INTRODUCTION

The emergence of artificial intelligence and its
integration in various scientific and engineering applications
have led to an unprecedented surge in data generation across
various domains such as bioinformatics, genomics and more.
This immense data growth has the potential to unfold

valuable insights to produce data-driven decisions and
optimize existing process. However, data-intensive tasks
suffer from various computational challenges to handle vast
amount of data as manipulating such huge volume of data
involves intricate algorithm and parallel processing [1].
Hence, developing sophisticated hardware architecture
capable of handling massive data has become a center of
attention among researchers in both industry and academia.

Considering the mammoth datasets and their underlying
complex data mapping, modern data analytic tasks demand
hardware architectures with agility, scalability, and
adaptability without sacrificing performance. Consequently,
several domain-specific hardware accelerators like SpArch
[2], MatRaptor [3] have been proposed with improved
dataflow mechanism; however, these designs do not provide
inherent data processing capabilities that hinders their
adaptability to variations in data size, model complexity, and
software frameworks irrespective of applications. Again,
architecture like MEISSA [4] offers low latency; hence, is
beneficial in edge devices whereas TPU [5] provides high
throughput and shows better performance in data centers.

Given the existing whitespace between the advancement
in algorithm and the need for efficient hardware to adapt
these algorithms, researchers are also focusing on improving
computing technology. Several computing techniques like

Figure 1 (A) Overview and concept of programmable hardware architecture (B) Message encoding scheme (C)

Instruction Set Architecture (ISA).

fine-grained polymorphic circuit [6], noise-based
configurable computing [7], crosstalk built-in memory [8]
have been proposed to improve logic computations. Even
though these techniques show prospects in circuit
performance, there is still necessity to develop hardware that
can be programmed at run-time for AI and data intensive
tasks. This gap has motivated us to develop a hardware
architecture that has potential to perform essential operations
like matrix-vector multiplication with intelligent dataflow
within minimum time steps.

In this paper, we propose a novel programmable
computing technology that revolves around a unique flexible
virtual interconnection scheme where any computing unit
can be connected to another at run-time. To facilitate this, we
developed a lightweight instruction set architecture (ISA)
that enables transferring values from one processing element
to another inherently without any additional data processing
mechanism. Our intelligent processing element resembles
GPUs and TPUs in terms of streaming, distribution, and
parallel nature but are distinct in their interconnection
mechanism and hence efficient data pipelining. Therefore,
the hardware architecture can handle large amount of data
with the same efficiency since the reconfiguration and
computation scheme is not rigid for certain data sizes.

In short, the key contributions of our design are as

follows:

• An innovative computer architecture concept to
achieve programmability at run-time.

• A compact instruction set architecture that enables
intuitive data flow mechanism within hardware
elements without software intervention.

• A low-latency matrix-vector multiplication approach
using reconfigurable hardware structure.

• Evaluation of our programmable accelerator on
computation-intensive PageRank algorithm to
analyze protein network with high throughput.

II. HARDWARE ARCHITECTURE

A. Programmability

Our innovation is a programmable computing
architecture that can be reconfigured at run-time to behave as
a custom ASIC through interconnection flexibility and, as a
result, information processing. An analogy of the proposed
interconnect configurability is shown in Figure 1A (left). If
we assume that 5 people are standing in a line, and they
generate and pass messages from left to right in a circular
manner (#1 sends to #2, #2 sends to #3, and the rightmost
person, #5, sends its message to #1), then any message from
anyone can be delivered to anyone in this human chain. For
example, if #1 generates a message “Hi” intended for #5, it
passes it to #2, and #2, #3, and #4 keep passing the same
message to their right until destination #5 is reached. In this
message passing scheme, #2, #3, and #4 form a virtual link
between #1 and #5. This source, destination-based message
passing scheme can be applied to computing cores as well as
shown in Figure 1A(right). We organize the cores in rows
and columns and connect them in a manner that messages
can be communicated between any cores. The cores are very
light and capable of performing only essential operations like
programming and arithmetic. A message originating from
any of the cores in a 16 Core configuration (4 rows and 4
columns- Figure 1A(right)), goes right or down depending
on the destination. To configure our proposed hardware unit,
only messages need to be sent to proper cores which in turn
sets destination addresses, values, and operations through
register writes. The message encoding scheme is shown in
Figure 1B. A core is capable of both programming and
arithmetic operations. The opcode values act as guides to
distinguish between programming and operation. The
instruction set architecture (ISA) of our programmable
hardware accelerator is shown in Figure 1C, that comprises
only 10 instructions. Among these, one instruction (Prog) is
designated for data loading and the remaining nine
instructions (UPDATE, A_ADD, A_SUB, A_MUL, A_DIV,
A_ADDS, A_SUBS, A_MULS, A_DIVS) are allocated for
various mathematical manipulation.

 The programmability concept of our proposed hardware
accelerator is illustrated in Figure 2. Here, we used only four
instructions and focused solely on a single row of the entire

Figure 2(A) Bitwise segmentation of messages and (B) Illustration of the Concept of programmability utilizing

hardware resources.

architecture for ease of demonstration. In this example, six
messages shown in Figure 2A are provided as inputs to three
cores (Core0, Core1, Core2) over two separate clock cycles.
During the initial clock cycle, three messages (M-1, M-2,
and M-3) are transmitted from the user end. As soon as,
cores acknowledge these messages, the decoder unit of each
core analyze the opcode (from bit 0 to 3) and the destination
location (from bit 4 to 15). In this case, the opcode is “Prog”
and hence the values (1.1, 1.2, 1.3) embedded in the message
will be stored in the floating-point unit (FPU) of respective
cores. Cores also retain the next opcode (from bit 48 to 51)
and the next destination (from bit 52 to 63) integrated in the
message. In the next clock cycle, the remaining three
messages (M-4, M-5, and M-6) are sent. According to the
opcode (A_MULS) of these messages, it first multiplies
values (1, 2, 3) contained in the messages with the values
(1.1, 1.2, 1.3) stored in the respective FPU. The opcode and
destination are then updated according to the next opcode
and next destination value stored in the core. Consequently,
three multiplication results (1.1, 2.4, 3.9) will be streamed
towards core3 with opcode “A_ADD”, “A_ADD”, and
“UPDATE” respectively. Thus, core3 updates its value to
3.9 at first and then performs two consecutive addition
operations. Finally, it stores 7.9 in core3.

B. Matrix-Vector Multiplication

The matrix-vector multiplication operation using our
proposed hardware unit can be divided into four (4) steps: 1)
Data (Matrix) load 2) Data (Vector) load and multiply and 3)
Addition and 4) offload. Figure 3 illustrates an example of
the matrix-vector multiplication between matrix A (4 X 3)
and vector B (3 X 1), showing the required time steps in each
stage. Firstly, the entire matrix A is distributed across the
fabric through hopping. The decoder unit of each core
decodes the incoming message and programs each core with
proper values. Upon loading matrix A, the transpose of the
vector B is transferred leveraging vertical bus, and
multiplication operations are performed in each core.

Afterward, the multiplication results are streamed to the
desired location using horizontal bus, upgrading the message.
Finally, the matrix-vector multiplication results are stored in
the last core of each row of the hardware architecture after
executing addition.

 Suppose a matrix-vector multiplication takes two inputs:
a matrix of size (N X M) and a vector of size (M X 1) then
the number of cores required to store a matrix is (N X M).
Since the vector has only 1 column, it will not occupy any
additional cores. Additionally, we need another N number of
cores to add the multiplication result. Thus, the number of
cores necessary to perform a matrix-vector multiplication is
{(N X M) + N}. Here, the matrix will be loaded through
hopping where each row of the matrix will be transferred one
by one starting from the last row. Hence, the number of time
steps required to load a matrix of size (N X M) is N. Then,
the vector will be sent using vertical bus and it will be
multiplied with the matrix. This operation will require only 1
time step because of using vertical bus. Similarly, the
addition operation will cost 1 time step utilizing horizontal
bus. Finally, the result will be offloaded that will consume 1
more step. Thus, the total time steps required for the matrix-
vector multiplication operation is (N + 3).

III. ACCELERATING PAGERANK ALGORITHM BASED ROTEIN

NETWORK ANLYSIS LEVERAGING PROPOSED HARDWARE

 Protein network is an indispensable tool for deciphering
intricate molecular structures of biological processes; hence,
analyzing protein networks is a fundamental task in
biomedical research and drug discovery. However, existing
protein network datasets are often incomplete and contain
significant number of false positives [9]. Therefore,
researchers are actively working on developing
comprehensive protein network datasets like hu.MAP 2.0,
HuRI, Y2H, Structure, DroRI etc [10-11]. Although large
protein networks hold promise to perform rigorous
inspection and drive innovation, choosing an apt algorithm to
analyze such extensive network is also crucial. The famous

Figure 3 Matrix-Vector multiplication in our proposed programmable hardware accelerator.

PageRank algorithm [12], primarily used for Google search
engine optimization algorithm, has been widely adapted to
identify key insights about a protein network due to its
ability to capture both global and local network information
[13].

 In protein network analysis applying PageRank
algorithm, each protein is defined as nodes and the
connections between proteins are referred to as edges.
PageRank algorithm iteratively calculates the relative
importance (page rank) of any protein (node) in the network

following the equation shown in 4(B). Therefore, interpreting
data-intensive protein network using PageRank algorithm
puts forward various computational challenges to handle vast
amount of data as manipulating such large datasets involves
multiple iterations and computation expensive operation like
matrix-vector multiplication. In such scenario, our
programmable hardware architecture offers a convenient
solution by accelerating the matrix-vector multiplication
process.

Figure 4(A) A small portion of large Protein network (B) Time steps required to implement the PageRank

algorithm using our proposed hardware accelerator (C) Throughput calculation of the PageRank algorithm

utilizing available resources.

Figure 5 Simulation result of our proposed reconfigurable hardware architecture.

 To showcase the performance of our programmable
hardware design, we have segmented the PageRank
algorithm in several stages and calculated the required time
steps in every stage over many iterations. Figure 5(B)
demonstrates the total time steps required to complete one
iteration of the PageRank algorithm. Here, the multiplication
between the matrix (H) and the vector (PRn-1) requires N+3
steps; then, a scalar (d) will be loaded to be multiplied with
the result of matrix vector multiplication that costs 1 time
step. After that, the addition and offloading require 2 more
steps. This process will be repeated several times based on
the desired accuracy. Thus, the total time steps necessary for
n iterations can be presented as: {n X (N+6)}; where, N
represents number of proteins in the network and n
represents number of iterations. Based on this concept, the
throughput of a PageRank algorithm for a large dataset using
limited hardware resources can be calculated as shown in
Figure 5(C).

A. Methodology

we developed our programmable hardware architecture
using Verilog and simulated the design in Xilinx Vivado to
verify the desired functionality of our design. Later, we
followed a digital design flow based on CAD tools using a
high-performance compact mobile computing plus
(CLN28HPC+) process from TSMC 28nm commercial PDK
with 8 metal layers and supply voltage of 0.9V. We primarily
focused on demonstrating programmable nature of our
hardware to validate our novel computing concept and
measured several design metrics to examine the hardware
implementation benefits. Later, we used our computing
strategy to handle complex operation of PageRank algorithm
to analyze protein networks and observed throughput with
increasing network complexity. We have maintained a
uniform 200 MHz clock frequency in various stages of
implementation like simulation, synthesis, and performance
analysis. The simulation result of our proposed hardware
architecture is depicted in Figure 4. In our testbench, we
have considered six (6) messages (Left-1, TOP-1 to TOP-5)
to be sent to our hardware unit. The current address of our
hardware unit is 5, while the addresses of neighboring
hardware units are 2 (Top), 9 (Bottom), Left (4), Right (6).

Here, the opcode and the current destination of the left
message-1 are “Prog” and “5” respectively; hence, the
message will be decoded inside the SiteO rather than passing
it to the right or bottom. On the other hand, the opcode and
the present location of messages that are sent from the top
side (TOP-1 to TOP-5) are “Prog” and “9”. Therefore, these
messages should be routed through the bottom port. The
expected behavior in terms of programmability is achieved
which is evident in simulation result shown in Figure 4. A
single unit of our programmable architecture consumes only
4.1 mW power under TSMC 28nm technology as reported in
Table I.

Table I:

Design parameters of a single programmable core

Technology TSMC 28nm

Process HPC+

Metal Layer 1P8M

Voltage (VDD) 0.9V (nominal)

Package Wire Bond

Area 6 mm2

Power 4.1 mW

Frequency 200 MHz

Gate Count ~98000

B. Performance

The latency of our matrix-vector multiplication process is
appended in Figure 6 (A). Here, we have varied the number
of rows (N) of the matrix of size (N X M) from 256 to 8192
and observed the respective latency. The results indicate that
the time steps required to complete a matrix-vector

multiplication is almost equal (N+3  N) to the number of
rows in the matrix and it is independent of the number of
columns in the matrix or the vector size. Figure 6 (B)
demonstrates the throughput to analyze protein network
utilizing PageRank algorithm. In this case, we have varied
the number of proteins in the network from 1000 to 5000 and
observed required times. For evaluation, we have conducted
100 iterations utilizing a 200 MHz clock frequency and
leveraging only 4096 available hardware units. Our proposed

Figure 6(A) Latency calculation of Matrix-Vector multiplication varying rows of Matrix A (B) Throughput

calculation varying the number of proteins in protein network.

computing methodology requires just 213.6 milliseconds to
complete 100 iterations of PageRank algorithm to analyze a
protein network comprising 5000 proteins.

IV. CONCLUSION

We presented a novel configurable hardware architecture

designed for AI and data-intensive tasks. This architecture

leverages a flexible interconnection scheme and a parallel

organization of compute units, making it well-suited for

large-scale, parallel, computationally intensive tasks.

Additionally, we introduced the associated instruction set

architecture (ISA) for programming and operation control.

To demonstrate the efficacy of our hardware, we presented a

case study involving a protein network search. Furthermore,

we validated our design concepts through simulations

conducted on a TSMC 28nm technology node. We also

detailed our evaluation methodology and presented

performance results for running the matrix-vector

multiplication tasks of the PageRank algorithm within the

context of protein network search. The combination of our

innovative runtime-programmable architecture for compute-

intensive tasks and its demonstrably fast performance

suggests its significant potential for future applications.

V. REFERENCES

[1] K. Akarvardar and H. . -S. P. Wong, "Technology Prospects for Data-
Intensive Computing," in Proceedings of the IEEE, vol. 111, no. 1,
pp. 92-112, Jan. 2023

[2] Z. Zhang, H. Wang, S. Han and W. Dally, "SpArch: Efficient
Architecture for Sparse Matrix Multiplication," in 2020 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), San Diego, CA, USA, pp. 261-274, 2020.

[3] N. Srivastava, H. Jin, J. Liu, D. Albonesi and Z. Zhang, "MatRaptor:
A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-

Wise Product," 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Athens, Greece, pp.
766-780, 2020.

[4] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor
processing unit," 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Toronto, ON, Canada,
pp. 1-12, 2017

[5] B. Asgari, R. Hadidi and H. Kim, "MEISSA: Multiplying Matrices
Efficiently in a Scalable Systolic Architecture," 2020 IEEE 38th
International Conference on Computer Design (ICCD), Hartford, CT,
USA, pp. 130-137, 2020

[6] Md Arif Iqbal, Srinivas Rahul Sapireddy, S. Dasari, Kazi
Asifuzzaman, and M. Rahman, “A review of crosstalk polymorphic
circuits and their scalability,” Memories - Materials Devices Circuits
and Systems, vol. 7, pp. 100094–100094, Apr. 2024

[7] N. K. Macha, B. T. Repalle, M. A. Iqbal and M. Rahman, "Crosstalk-
Computing-Based Gate-Level Reconfigurable Circuits," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
30, no. 8, pp. 1073-1083, Aug. 2022

[8] P. Samant, Naveen Kumar Macha, and M. Rahman, “A Neoteric
Approach for Logic with Embedded Memory Leveraging Crosstalk
Computing,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 19, no. 1, pp. 1–16, Dec. 2022

[9] G. Alanis-Lobato, “Mining protein interactomes to improve their
reliability and support the advancement of network
medicine,” Frontiers in Genetics, vol. 6, Sep. 2015

[10] H.-W. Tang et al., “Next-generation large-scale binary protein
interaction network for Drosophila melanogaster,” Nature
Communications, vol. 14, no. 1, p. 2162, Apr. 2023

[11] D. F. Burke et al., “Towards a structurally resolved human protein
interaction network,” Nature Structural & Molecular Biology, vol. 30,
no. 2, pp. 216–225, Feb. 2023

[12] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine” Computer networks and ISDN systems, vol. 30, pp.
107-117, 1998.

[13] Lei, X., Liang, J. and Guo, L. ‘Identify protein complexes based on
PageRank algorithm and architecture on dynamic PPI networks’, Int.
J. Data Mining and Bioinformatics, Vol. 22, No. 4, pp.350–364, 2019

