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Abstract—The ever-growing demand for efficient AI and Big
Data processing has fueled a rapid development of new hardware
architectures specifically designed for compute-intensive tasks.
Alongside these advancements, software solutions are emerging to
leverage this specialized hardware by offloading tasks. However,
proprietary software often presents a significant learning curve
for users, hindering adoption and flexibility. This paper pro-
poses OFFLOAD, an open-source, hardware-agnostic software-
hardware framework. OFFLOAD distributes tasks to various
hardware units, including both novel accelerators and existing
system-on-chip (SoC) architectures. Our framework seamlessly
interfaces with popular databases and application development
tools. Through multi-level abstractions at the compiler, operating
system, and driver levels, OFFLOAD translates high-level code
and data into hardware-optimized binary instructions. To our
knowledge, OFFLOAD represents a novel approach in this do-
main. We demonstrate the feasibility of OFFLOAD by integrating
it with popular tools like MySQL, Apache Spark, and Apache
Arrow in Python at the user level. Tasks are then offloaded for
execution on hardware using memory-mapped I/O. Raspberry Pis
serve as examples in this demonstration, showcasing the entire
workflow from software-based data query to hardware execution.

Index Terms—Distributed computing, Hardware accelerators,
Custom-designed hardware network, big data analysis/Machine
learning.

I. INTRODUCTION

The evolving field of Artificial Intelligence and Big Data
analytics [1] have sparked a chips race for developing hard-
ware accelerators [2] capable of handling a variety of compute
intensive tasks. Examples include Google’s TPU [3], Nvidia’s
Groq [4], SambaNova’s DSA [5], Intel’s Hailo [6] and others.
As these chips with new computing architectures are emerging,
so is their counterpart in software for offloading tasks [7]
[8]. A challenge with such software-hardware pairing is the

locking in vendor specific ecosystem and significant devel-
opment cycle to adapt to new software framework [9] [10].
To overcome this, we propose OFFLOAD: an open-source,
hardware-agnostic framework that bridges the gap between
software and hardware. OFFLOAD enables task distribution
across diverse hardware architectures, including cutting-edge
accelerators and established system-on-chip (SoC) solutions.
This flexibility is achieved through multi-level abstractions,
where OFFLOAD translates high-level code and data used
in popular application tools into hardware-optimized binary
instructions for the target hardware. This approach not only
simplifies software development but also unlocks the full
potential of the underlying hardware, regardless of its origin.

A variety of higher level application development frame-
work can be supported in OFFLOAD. This includes database
management systems such as MySQL [11], Oracle, SQLite,
MongoDB, etc., and data processing frameworks like Spark
[12], Hadoop [13], Cassandra [14], Flume, etc., which are
combined in development frameworks like python, java, c++.
Our framework also supports data storage formats like Ar-
row, Parquet, etc. In this paper, we demonstrate the overall
integrated framework with MySQL, Apache Spark, Apache
Arrow and python in the software side, and an x86 machine,
3 raspberry PIs and Flash memory on the hardware side as a
proof of concept.

MySQL is a free data management system that allows con-
nectivity through various APIs. Apache Spark, a widely used
big data processing engine, bridges the gap between MySQL
and OFFLOAD. Spark’s high-level API simplifies job control,
making it easier to manage complex workflows. Apache Arrow
complements this ecosystem with its efficient data storage and
processing techniques. Crucially, Arrow enables parallel data



tokenization, making it ideal for distributed execution within
the framework.

To effectively distribute computations across diverse hard-
ware units (including both novel accelerators and existing
SoCs), OFFLOAD utilizes a custom-designed master-slave
architecture. Master receives data and queries from Server
then the master hardware processes data and instructions, then
offloads the optimized binary information to a shared memory
space. Slave devices then access their relevant portions of this
memory, which acts as the central communication hub for
input and output.

We demonstrate the framework’s functionality using two
Raspberry Pi devices as slaves. This showcase encompasses
the entire workflow, from a software-based data query (using
a real-estate sales database as an example) to its execution
on the hardware. Additionally, the paper presents a qualitative
comparison with relevant academic work applied to FPGAs
and SoCs.

This paper presents a comprehensive exploration of the
OFFLOAD framework. Section II provides an overview of
its entire software and hardware stack, along with a detailed
explanation of the information flow between these compo-
nents. Section III delves into the hardware setup employed for
the proof-of-concept implementation. Section IV details the
firmware implementation. Section V serves the dual purpose
of demonstrating the problem-solving efficacy of the proof-of-
concept and presenting an analysis of the OFFLOAD frame-
work. Finally, Section VI concludes the paper by summarizing
the key takeaways.

II. APPROACH FOR THE FRAMEWORK

A. Software Stack

The software stack behind this project orchestrates data
movement and processing across several layers, facilitating
efficient distributed computing on hardware accelerators. At
the highest level, the application, developed in Python, lever-
ages the rich functionalities of Apache Spark [15], a big data
processing framework. Spark, running within the Java Virtual
Machine (JVM), utilizes JDBC [16] drivers to seamlessly
connect with a MySQL database server. This enables the ap-
plication to execute SQL queries and retrieve data, benefitting
from established and standardized interfaces typically used in
big data environments. Apache Arrow [17] further enhances
this process by optimizing data storage and distribution for
accelerators. Its columnar format and efficient processing
techniques contribute to improved performance.

Data retrieved from the database and prepped by Spark
is then split and transferred to the next layer by custom
firmware, which will be elaborated on later. This custom
firmware acts as an intermediary, preparing the data for
efficient processing by the hardware accelerators. The prepared
data is then transferred down the stack to a custom-designed
hardware network. This network utilizes a shared memory
device driver interface, facilitating communication between
a central accelerator master and multiple accelerator slave
devices. The master leverages this shared memory interface to

Fig. 1: Software Stack

distribute tasks and the prepared data to the individual slaves.
Each slave device executes its assigned tasks using custom
accelerator slave firmware, specifically designed to optimize
computations on the hardware accelerators.

B. Hardware Stack

Fig. 2: Hardware Stack

The hardware stack comprises two distinct sections: the
user application environment and the accelerator hardware
network. The user application resides on a standard Windows
PC connected to a network utilizing the ubiquitous TCP/IP
protocol. This allows for seamless integration with existing
computing infrastructure. The accelerator hardware network,
on the other hand, provides a dedicated environment for



distributed computations. It features a Raspberry Pi (RPi)
[18] acting as the master node, serving as the entry point
for the network. The master RPi connects to the external
world through the familiar TCP/IP protocol, ensuring smooth
communication with the user application. Internally, the master
communicates with a shared bus controller, implemented using
a SN54HC153 multiplexer (MUX). This MUX facilitates
efficient data exchange between the master and multiple slave
accelerator RPis. All communication within the accelerator
hardware network leverages the widely adopted Serial Periph-
eral Interface (SPI) bus protocol [19], ensuring reliable and
standardized data transfer between processing units.

C. Flow of Information

The data flow within the system can be separated into two
main stages: data distribution and query distribution.

1) Data Distribution: The data distribution flow orches-
trates the movement of data from the database to the accel-
erator hardware network for processing. First, upon receiving
a user query specifying an operation on a MySQL database
table, Apache Spark, a big data processing framework, uti-
lizes JDBC connectors to seamlessly connect and retrieve
the requested data. Custom firmware then intercepts this
retrieved data and performs two key actions. It first splits the
data into smaller subsets based on the number of available
slave accelerators (Raspberry Pi devices) within the network,
facilitating parallel processing. Secondly, Apache Arrow is
employed to convert these data subsets into a space-optimized
Parquet format [20]. Parquet, a columnar storage format,
offers efficient data storage and retrieval on disk. Additionally,
Apache Arrow, with its in-memory data structure specification,
further enhances performance by providing a standardized
way to represent data in memory for communication across
different programming languages.

Fig. 3: Data Distribution Flow

Finally the master device retrieves data from the server
using the efficient TCP/IP protocol with the Paho MQTT
messaging library [21]. It then splits the data into subsets based
on the number of available slave devices. These subsets are

written to designated shared memory locations using a shared
memory driver and a Shared Bus interface driver. Finally, the
master signals the slave Raspberry Pi devices to confirm data
reception and readiness for processing.

2) Query Distribution Flow: The query distribution flow
manages the translation and execution of user queries within
the distributed processing environment. Unlike traditional sys-
tems where the database server directly parses and executes
SQL queries, this project utilizes a custom firmware approach
due to the distributed nature of the data stored in shared
memory across multiple accelerators.

Fig. 4: Query Distribution Flow

The process begins with the user submitting a query, ideally
adhering to standard SQL syntax. This query is then sent to
the master accelerator (Raspberry Pi). The master’s custom
firmware intercepts the query, performs parsing to understand
the operation requested, and leverages shared memory to dis-
tribute sub-queries or tasks to the respective slave accelerators.
The specifics of this task distribution using shared memory
will be further elaborated upon in a later section.

Each slave accelerator receives its assigned sub-query and
utilizes the optimized Apache Arrow format for efficient
processing. Upon completion, the results from each slave are
sent back to the master accelerator using shared memory.
Finally, the master’s custom firmware aggregates these indi-
vidual results, potentially performing additional operations as
required, and ultimately populates the final outcome for the
user. This approach facilitates parallel processing of the query
across multiple accelerators, aiming to achieve significant
performance improvements for complex data operations.

III. HARDWARE SETUP

The hardware setup can be visualized through a block
diagram where the Master Raspberry Pi (RPi) acts as the
central hub for user interaction and communication. The
Master RPi establishes direct connections to both slave devices
using General Purpose Input/Output (GPIO) pins. This allows
for low-level control and data exchange between the Master
RPi and the slaves. Additionally, the Master RPi interfaces
with external memory through a dedicated Bus Controller.
This controller, managed by the Master RPi, plays a crucial
role in managing access to the external memory for the



Fig. 5: Hardware Setup Block Diagram

slave devices. By granting and revoking access privileges,
the Bus Controller ensures efficient memory utilization and
avoids potential conflicts during data operations initiated by
the slaves. This configuration facilitates a centralized control
structure where the Master RPI coordinates communication
and memory access for the slave devices within the accelerator
framework.

The hardware setup of the framework can be visualized
through a block diagram outlining the interconnection between
its key components. These components include: a Master
Raspberry Pi (RPi), one or more Slave Raspberry Pi(s), an
SN54HC153 Multiplexer (MUX) acting as the Bus Controller,
and a shared memory module, the AT45DB321E [22].

For stable power distribution throughout the system, all
components share common ground and VCC connections. The
Master RPi communicates with Slave-1 using two General
Purpose Input/Output (GPIO) [23] pins. GPIO-1 transmits
signals from the Master to Slave-1, while GPIO-2 serves as the
acknowledgement channel from Slave-1 back to the Master.
Following the master-slave paradigm, GPIO-1 is configured
as an output pin on the Master and an input pin on Slave-
1. Conversely, GPIO-2 acts as an input pin for the Master
and an output pin for Slave-1. This communication pattern is
replicated for Slave-2, utilizing GPIO-3 and GPIO-4 on the
Master RPi.

The hardware framework facilitates data transfer between
the master device, shared memory, and slave devices using the
SPI protocol. However, to ensure only one device communi-
cates with the shared memory at a time, a specific connection
scheme is employed.

Firstly, all MOSI (Master Output/Slave Input) pins from
the master, slaves, and shared memory are tied together. This
configuration reflects the single master design, where only one
master communicates with the shared memory. Similarly, all
MISO (Master Input/Slave Output) pins are shorted together,
allowing data transfer between any device and the master.

For controlled access to the shared memory, a critical role is
played by the SN54HC153 multiplexer (MUX). The master’s
CS (Chip Select) pin connects to input 1C0 of the MUX, while

Fig. 6: Hardware Setup Real Image

its SCLK (System Clock) connects to 2C0. This establishes the
master as the default device communicating with the shared
memory.

However, the framework allows selective access for slave
devices. Slave-1’s CS pin connects to input 1C1 of the MUX,
while Slave-2’s CS pin connects to 1C2. Similarly, Slave-2’s
SCLK connects to input 2C2 of the MUX. This configuration
empowers the master to control which device (itself or a slave)
interacts with the shared memory.

The core concept lies in granting exclusive access to the
shared memory for read/write operations. To achieve this, the
shared memory connects to all devices (master and slaves).
However, through the MUX, only one device can access it at
a time. The master firmware dictates this access by controlling
the A and B pins of the MUX using two GPIO pins.

Fig. 7: SN54HC153 Multiplexer Configuration to select Mas-
ter and Slave Devices

By default, both A and B pins are LOW (A=0, B=0). This
configuration selects the output connected to C0, effectively
connecting the master to the shared memory. When the master
sets A to HIGH (A=1) while keeping B LOW (B=0), the
output connected to C1 is selected, granting access to Slave-
1. Similarly, setting A to LOW (A=0) and B to HIGH (B=1)
routes the shared memory connection to Slave-2.



This design ensures controlled and efficient communication
between the master, shared memory, and slave devices within
the SPI framework.

IV. SOFTWARE & FIRMWARE IMPLEMENTATION

The project codebase has been released as open-source on
GitHub link [24] is organized within a folder named bist,
signifying Built-In Self-Test [25]. This folder contains the
source code modules that comprise the system. The initial
development of the bist module targeted the creation of
a Proof-of-Concept (POC) test suite. This test suite facili-
tates comprehensive integrated testing between various system
components including the Master Raspberry Pi (RPi), Slave
Raspberry Pis (RPis), External Shared Memory module, and
Shared Bus controller interface.

Fig. 8: Code-base folder structure

AT45DB321E.py: This module serves as the driver com-
ponent, encapsulating the commands responsible for read,
write, and erase operations on the external shared memory
module. It also includes all associated routines pertinent to
these operations. Notably, the AT45DB321E.py module re-
sides on both the Master and Slave RPis.
bist_master.py: This module functions as the entry

point for the accelerator network. It furnishes the interface for
receiving user queries from the host system. The execution
of this module is initiated using the command python
bist_master.py.
bist_slave.py: This module resides on each Slave

RPi within the system. Its execution is invoked us-
ing the command python bist_slave.py --slave
SLAVE_NUMBER. The specific configuration for each Slave
RPi is established within this module by parsing the
ext_mem_config.json file.
gpio.py: This module is accountable for managing the

GPIO (General Purpose Input/Output) configurations for both
the Master and Slave RPis.
ext_mem_config.json: This configuration file is

present on both Master and Slave RPis. It stores the JSON
formatted configuration details for all Slave RPis, including the
designated input and output regions within the shared memory
allocated to each Slave RPi.

{
"SLAVE_1_INPUT_ADDR" : 0,
"SLAVE_2_INPUT_ADDR" : 65536,
"SLAVE_1_OUTPUT_ADDR" : 131072,
"SLAVE_2_OUTPUT_ADDR" : 196608

}

query_handler.py: This module executes the routines
tasked with parsing SQL queries and subsequently distributing
these parsed queries to the Slave RPis within the system.
sn54hc153_mux.py: This module serves as the bus

controller component utilized by the Master RPi to govern
access to the shared memory by all Slave RPis.

Fig. 9: Query Distribution - Firmware Layers

host: This subfolder within the bist folder constitutes
the direct user interface. The host system can reside on a
cloud platform, a personal computer, or a big data server.
This subfolder encompasses the modules that interact with the
user, the database, and retrieves queries to be processed by the
accelerator network.
covid-config.json: This configuration file specifies

the details for connecting to the MySQL [26] database server,
including the connector driver information, username, and
password.
main.py: This module represents the user-level applica-

tion that leverages Apache Spark. It is responsible for receiving
user queries and delivering them to the Master node within the
accelerator network.
mysql-connector-java-8.0.23.jar: This file

comprises the JDBC driver, a software component that
permits Apache Spark to establish a connection to the
MySQL database server.



Fig. 10: Complete Task OFFLOADING Cycle

V. RESULTS

The OFFLOAD framework’s design prioritizes simplic-
ity and generality. This strategic approach enables effortless
porting across various architectures, eliminating limitations
imposed by fixed instruction set architectures. As a result,
the framework presents itself as a valuable tool applicable
to big data analytics tasks within heterogeneous computing
environments.

To achieve accelerated and parallel processing within the
distributed accelerator network, query handling occurs primar-
ily at three distinct levels.

1) Host Side: Queries pertaining solely to data retrieval
from the database, such as ”select * from table name,”
are processed entirely at the host level.

2) Master Side: Once the requested table is fetched from
the database, it is transmitted to the Master Raspberry Pi
(RPi) over a TCP/IP network. The Master RPi then parti-
tions the table into multiple chunks based on the number
of Slave RPis connected to the network (identified
through the ext_mem_config.json configuration
file). Two primary data splitting methods exist: splitting
by the number of rows or splitting by the number of
columns. While both methods offer advantages, column-
based splitting leverages the accelerated performance of
Apache Arrow. Apache Arrow stores data in Parquet
file format, which, along with hardware accelerators,
offers additional performance benefits due to contigu-
ous memory locations. This eliminates the CPU cycles
required for traversing through non-contiguous memory

locations. For current implementations, exploiting ARM
SIMD/NEON ISA (instruction set architecture) can be
beneficial. However, the design holds the potential for
exponential performance gains with the integration of
dedicated accelerator hardware in the future. Conse-
quently, the data is split by columns into Parquet files
and subsequently copied into designated shared memory
locations based on the pre-defined configuration.

3) Slave Side: Queries requiring processing, such as ”SE-
LECT SUM(column name) FROM table name,” are
handled differently. The host transmits the query to the
Master RPi. The Master then analyzes the query to
extract information regarding the specific column and
operation to be performed. Based on this analysis and the
configuration file, the Master identifies the appropriate
Slave RPi for the task. The Master subsequently writes
a subquery into the designated Slave memory location
and invokes the corresponding Slave RPi. The Slave
RPi then initiates the process by reading the input data
from its designated columns within the shared memory
using the Apache Arrow Parquet format. The Slave RPi
executes the query on the designated column, writes
the results to its assigned output memory location, and
signals the Master upon completion. Upon receiving
acknowledgments from all Slaves, the Master retrieves
the results from their respective output memory locations
and transmits the combined outcome back to the host via
the network, finalizing the query execution.

In scenarios where multiple Slaves are involved, the Master



Fig. 11: Master dividing query into sub-queries for offloading to slaves

waits for acknowledgments from all participating Slaves be-
fore retrieving the results from their respective output mem-
ory locations. The Master then combines these results and
transmits the final outcome back to the host via the network,
finalizing the query execution.

TABLE I
Comparison of OFFLOAD with other Frameworks

Feature OFFLOAD Fletcher [7] TaPaSCo [8]

Syntax Simple Complex Complex
Modularity High Low Moderate
Task Distribution Parallel Monolithic Parallel
Platform Generic Only FPGA’s Only FPGA’s
Standard Libraries Limited Extensive Limited
Memory Management Firmware User Kernel
Exception Handling Firmware Operating System Kernel
Compiler Support Not Needed Yes Yes
Portability High Low Moderate
Need for Standard ISA No Yes Yes
Apache Spark Yes Yes No
Apache Arrow Yes Yes No
MySQL Yes No No
Python Yes Yes No

OFFLOAD stands out as a device-agnostic framework,
distinguishing itself from Fletcher and TaPaSCo. One of
its key strengths lies in its ability to support a variety of
devices seamlessly, compared to the FPGA-centric nature of
Fletcher and TaPaSCo. While Fletcher and TaPaSCo rely on
FPGA toolchains and are limited to FPGA devices, OFFLOAD
operates on memory-mapped I/O, ensuring compatibility with
a broader spectrum of hardware.

Moreover, OFFLOAD offers unparalleled flexibility in task
partitioning strategies through its custom driver, enabling inte-
gration with custom architectures—an advantage unavailable
in Fletcher and TaPaSCo. This adaptability empowers develop-
ers to tailor their systems precisely to their needs, maximizing
performance and efficiency.

Another significant aspect is that OFFLOAD is the only
open-source toolchain among the three frameworks. In con-
trast, Fletcher and TaPaSCo are built on FPGA toolchains,
placing them under proprietary and costly constraints. This
distinction not only fosters a more collaborative development
environment but also eliminates the financial barriers associ-
ated with proprietary solutions.

Furthermore, OFFLOAD’s emphasis on simplicity and ease
of use is evident in its streamlined syntax and compiler-
independent nature. Unlike Fletcher and TaPaSCo, which
require specific compiler configurations, OFFLOAD simplifies
the development process by eliminating such dependencies.

Additionally, OFFLOAD’s high portability makes it excep-
tionally adaptable across diverse environments, enhancing its
versatility and usability. Its seamless integration with popular
tools such as Apache Spark, Apache Arrow, MySQL, and
Python further underscores its suitability for a wide range of
applications, particularly in big data and AI tasks.

VI. CONCLUSION

The OFFLOAD framework is the first of its kind and
provides a pathway for offloading compute intensive tasks
to a variety of hardware. In this paper, we have detailed the
framework and its core aspects from data source, application
coupling to binary instruction and data generation. We have
shown validation of the framework by demonstrating hardware
task offloading for MySQL Database queries. Our demonstra-
tion used Apache Spark and Apache Arrow in Python which
are one of the most popular tools for database management and
de-segmentation of datasets. On the hardware side Raspberry
PIs were used to represent heterogeneous hardware. The
task offloading was centralized with memory mapped I/O.
The versatility, flexibility and scalability of this open-source
framework can be vital in paving way for easier adaption of
emerging machine learning and data analytics hardware. .
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