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Abstract— The functionality of Polymorphic circuits can be 
altered using a control variable. Owing to the multi-functional 
embodiment in polymorphic-circuits, they find a myriad of useful 
applications such as reconfigurable system design, resource sharing, 
hardware security, and fault-tolerant circuit design, etc. The 
polymorphic circuit approaches available in literature so far are 
either based on custom nonlinear circuit designs or based on special 
emerging devices such as ambipolar FET, configurable magnetic 
devices, etc. While some of these approaches are inefficient in 
performance, the other approaches involve exotic devices. We have 
proposed a novel polymorphic circuit design approach based on 
Crosstalk-Computing, where deterministic signal interference 
between nano-metal lines is leveraged for logic computation and 
reconfiguration purposes. In this paper, we elaborate upon the 
polymorphic circuit design in Crosstalk-Computing, present a 
comprehensive list of polymorphic logic gates designed, and 
characterize and benchmark our circuits with respect to CMOS 
circuit implementations. The ability to design a wide range of 
polymorphic logic circuits (basic and complex logics) that are 
compact in design and minimal in transistor count is unique to 
Crosstalk Computing, which leads to benefits in the circuit Power, 
Performance and Area (PPA).  Our circuit designs, simulation, and 
PPA characterization results show that the polymorphic crosstalk 
circuits provide 3x improvement in transistor count, 2x 
improvement in switching energy, and 1.5x improvement in speed 
for polymorphic logic circuits. In a best-case, the transistor count 
reduction is 6x. We present a cascaded circuit example of a 
polymorphic Multiplier-Sorter-Adder circuit and benchmark it 
with respect to the CMOS implementation.  
 

Index Terms— Crosstalk-Computing, Crosstalk Circuits, 
Reconfigurable Circuits, Polymorphic Circuits. 

I. INTRODUCTION 
OLYMORPHIC logic circuits are rich in their functional 
behavior, where a control variable can deterministically 

morph the circuit’s behavior between multiple functions [1]. 
For example, an AND gate can change as an OR gate and vice-
versa. Thanks to their ability to transform intrinsically, 
polymorphic circuits find their use in a myriad of applications 
[2-8] such as reconfigurable circuits/systems design[2][3], 
resource sharing[2][3], multifunctional adaptive systems [4], 
hardware security[5], fault tolerance [6], and self-test 
circuits[7][8][9]. Besides, as scaling down of feature size in 
Integrated Circuits (ICs) is approaching the physical limits, the 
miniaturization trend of ICs (Moore’s Law) is relaxing. 
Therefore, developing alternate techniques that try to push the 
horizons of Moore’s Law can be of tremendous potentials. 
Polymorphic circuits can be one such technique that tries to 
sustain Moore’s Law because they increase the circuit 
functionality in a given footprint by reusing the circuits to 
execute different functions. However, the tradeoffs in achieving 

such polymorphic circuits make them go or no-go for 
applications. 

 To be considered as a truly polymorphic circuit, along with 
the innate multifunctional nature, the control between different 
functions should be enabled by inherent device characteristics 
and/or external environmental influences [1]. The Polymorphic 
circuits evolved using genetic algorithms [13] were extensively 
researched. These evolved circuits can morph their functional 
behavior based on different environmental control variables 
such as temperature, supply-voltage, control-signal, light, 
radiation, etc. They find interesting applications in sensor 
circuits that morph and adapt their behavior in different 
environments [14], especially in extreme conditions of 
temperature, radiation, microwaves, etc. (for example in space 
electronics) [15][16].  The disadvantages [17] they face are 
technology dependency, scalability and inefficiency in speed 
and power, because of which the evolved circuits do not find 
applications in mainstream digital circuits/systems. 

Another approach actively pursued is chaos computing [18], 
in which non-linear dynamics in transistors and circuits are 
captured to implement multifunctional circuits. But these 
circuits are custom nonlinear/mixed-signal circuit designs for 
digital circuits. More recently, polymorphic circuits are also 
designed using emerging tunable polarity transistors [19-23], 
which can be configured either as p-type or n-type based on a 
control signal. These morphable transistors foster various fine-
grained polymorphic circuit schemes. However, these novel 
devices require complex device engineering compared to 
mainstream CMOS devices, and the circuit schemes necessitate 
additional circuitry to switch the power rails when the 
transistors change as p-type/n-type [20]. The other alternate 
approaches using emerging spintronic devices were also 
proposed [5], but they rely on complex information encoding 
schemes through spin-polarized currents and bipolar voltages, 
etc. Consequently, they are a significant departure from existing 
computational device and circuit paradigms.  

We have proposed a novel computation concept called 
Crosstalk-Computing (CT-Computing) [24] and implemented a 
wide range of compact and efficient polymorphic circuits in this 
approach [25]. In the CT-Computing technique, the signal 
interference between adjacent metal lines is astutely engineered 
to a logic principle. In contrast to the traditional Switch based 
logic computations, a deterministic superposition of crosstalk 
coupled input signals produces the logic operation in CT-
Computing. The counterpart of connecting switches/transistors 
in different patterns to achieve different logic is tuning the 
crosstalk coupling capacitances in CT-Computing. For 
polymorphism, an additional control signal is used, which 
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biases the circuit to alter its functional behavior [23]. We have 
also explored the application potentials of CT-Polymorphic 
circuits in [26] and [27]. 

  In this paper, we discuss the CT-Computing concept in 
detail and present a comprehensive list of crosstalk 
polymorphic circuit designs and their simulation responses. The 
polymorphic gates shown are AND-OR, AND-AO21(AND-
OR-21, i.e. (AB)+C), AND-OA21 (OR-AND-21, i.e. (A+B)C), 
AND-CARRY(AB+BC+CA), OR-AO21, OR-OA21, OR-
CARRY, AO21-OA21, CARRY-AO21, CARRY-OA21, and 
Inverter-Buffer (Inv-Buf). We have also presented a cascaded 
polymorphic circuit example of a 2-bit Multiplier-Sorter-Adder 
designed using the above Crosstalk-Polymorphic (CT-
Polymorphic) logic gates. Finally, we characterized the 
performance metrics of Crosstalk-Circuits (CT-Circuits) and 
benchmarked them with respect to CMOS implementations.  

The rest of the paper is organized as follows. Section II 
discusses the CT-Computing concept, provides the intuition for 
logic implementation and presents the circuit techniques to 
implement basic and complex logic circuits. Section III 
discusses polymorphism in CT-Computing and shows a wide 
range of CT-Polymorphic gates that can morph between 
different operations. In Section IV we present the comparison 
of CT-Polymorphic circuits with other approaches in the 
literature. In Section V we present the benchmarking results. 
Finally, Section VI concludes the paper.  

II. CROSSTALK COMPUTING  
The Fig.1(i) shows an overview of CT-Computing Fabric, 

which majorly comprises of four components, Crosstalk Layer 
(CTL), Active Devices, Interconnects, and Vias. The CT layer 
which computes the logic is a metal layer/layers comprised of 
capacitively coupled metal lines called Aggressors (Ag) and 
Victim (Vi). Interconnects and Vias serve their regular purpose, 
along with their contribution to coupling capacitance in CTL. 
The active devices depicted are FinFETs on SOI substrate. The 
purpose of transistors is to accurately control and reconstruct 
the signals, which would be discussed in the following sections. 
The aggressors serve as inputs, and the victim serves as the 
output. The Fig.1(ii) illustrates the aggressor-victim scenario of 
crosstalk-logic. It shows the capacitive interference of the 
signals for logic computation— the transition of the signals on 

two aggressor metal lines (Ag1 and Ag2) induce a resultant 
summation charge/voltage on the victim metal line (Vi) through 
capacitive couplings CC. Since this phenomenon follows the 
charge conservation principle, the victim net voltage is 
deterministic and possesses the information about signals on 
two aggressor nets; its magnitude depends upon the coupling 
strength between the aggressors and the victim net. The 
coupling capacitance is directly proportional to the relative 
permittivity of the dielectric and lateral area of metal lines 
(which is length multiplied the vertical thickness of metal lines) 
and inversely proportional to the distance of separation of metal 
lines. Tuning the coupling capacitance values using the 
variables mentioned above provides the engineering freedom to 
tailor the induced summation signal to the specific logic 
implementation.  

Fig.1(iii) depicts the notion of implementing logic gates 
(AND and OR) using crosstalk signal interference. Input signal 
transitions induce a voltage proportional to coupling 
capacitances. As shown in Fig.1(iii), for AND gate, the inputs 
coupling, CA, can be chosen such that the magnitude of the 
voltage induced on output net (Vi) is greater than a selected 
threshold voltage VT only when both inputs transition from 0 to 
1 (i.e., for input combination 11). The threshold voltage VT 

differentiates logic 0 and 1.  When only one of the input 
transitions (input combinations 01 and 10), the voltage induced 
on the victim net is below the VT; hence, the output can be 
considered as logic 0. Thus, as shown in Fig.1(iii), AND gate 
functionality can be realized using the crosstalk signal 
interference mechanism. Similarly, OR gate functionality can 
be realized just by increasing the coupling capacitance, which 
can be done by appropriately tuning the physical dimensions or 
choosing high-k dielectric material or both. The intuition for 
OR gate implementation is also shown in Fig.1(iii). Compared 
to AND gate, for OR gate, the coupling capacitance CO is 
increased (CO > CA) such that the transition of either of the input 
signal from 0 to 1 is now sufficient to induce a voltage above 
the logic threshold (VT). Therefore, input combinations, 01, 10, 
and 11 evaluates to logic output 1, as an OR gate. Practical 
realization of Crosstalk-Logic (CT-logic) circuits and their 
reliable and robust operation in cascaded circuits requires 
additional circuit techniques to be augmented to the intuitive 
idea described above, which is presented next.  

 
Fig.1: (i) Abstract view of Crosstalk-Computing fabric, (ii) Crosstalk-Computing Mechanism, (iii) Implementing Logic Gates based on CT-Computing 
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A. Basic Logic Gates 
Although properly engineered and coupled nano-metal lines are 
sufficient to emulate the logic behavior [24] in CT-Computing, 
the output net (Vi) which collects the crosstalk charge needs to 
satisfy three conditions to achieve deterministic functionality in 
all sorts of real circuit environments. First, the Vi net needs to 
start from a known initial state. Second, it should remain 
floating during logic evaluation to collect the crosstalk charge. 
Third, the output node should be able to drive the fanout gates 
in real circuits and maintain the signal integrity of binary 
voltage levels. As shown in Fig.2, the first two conditions are 
met by connecting a discharge transistor to the Vi net, and the 
third condition is met by adding an inverter to the Vi net.  
Fig.2(i) shows the 2-input AND gate in which input aggressor 
nets (A and B acting as Ag1 and Ag2) are coupled to Vi net 
through coupling capacitances of value CC (CC values are given 
in Table.1). The Dis signal drives the discharge transistor. The 

CT-logic gates operate in two alternate states, Discharge state 
(DS) and Logic Evaluation state (LE). During DS (enabled by 
Dis signal), the floating victim node is shorted to ground 
through the discharge transistor and thus starts with a known 
initial condition, i.e., 0. The alternate DS states ensure the 
correct logic operation during every LE state by clearing off the 
charge from the previous logic operation. During LE state (Vi 
net is floating) the rise transitions on aggressor nets induce a 
proportionate linear summation voltage on Vi net which is 
connected here to a CMOS inverter. The inverter acts as a 
regenerative threshold function. That is if the voltage computed 
on Vi net is above the inverter’s threshold-voltage/trip-point 
(𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼), it outputs the logic level 0, and vice-versa; It regenerates 
the signals and restores them to full swing. Also, 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 is tunable 
by changing PMOS to NMOS width ratios if required. The CT-
logic gates presented in thi

s 
paper are designed using the 16nm Predictive Technology 
Modeling (PTM) transistors and simulated on SPICE. The 
simulation response of the designed AND gate is shown in 
Fig.2(iii), where the first panel shows the discharge signal 
(Dis), the second panel shows two input signals (A and B) with 
00, 01, 10, and 11 combinations given through successive LE 
stages (i.e., when Dis=0), and the third panel shows the output 
response of the AND gate. For all the circuits, the FI node gives 
inverting logic output (NAND, NOR, etc.), and the F node 
gives a noninverting logic output (AND etc.). Similarly, OR 
gate implementation is shown in Fig.2(ii) and simulation 
response is shown in panel-4 of Fig.2(iii) (the input signals in 
panel-1 and panel-2 are shown common for both the circuits to 
limit the space). The difference between AND and OR gates is 
that the coupling strength (CC), as given in the Table. I, is 
greater for OR gate than AND; i.e., 0.8fF and 4fF for AND and 
OR, respectively. CC is the quantized capacitance specific to 
each gate.  The input aggressors would receive the coupling 
strengths in integer multiples of CC.  

 The operation of CT-logic gates would be represented 
functionally using a crosstalk-margin function, CTM(CC), which 
specifies that the inverter of the CT-logic gate flips its state only 
when victim node sees the input transitions through the total 

coupling greater than or equal to CC. For example, AND gate 
CT-margin function is CTM(2CC). It states that the inverter flips 
its state only when the victim node sees the input transitions 
through total coupling greater than or equal to 2CC, which 
happens only when both inputs are high. Similarly, for the OR 
gate (Fig.3(i)), the CT-margin function is CTM(CC); which 
means the transition of any one of the aggressors is sufficient to 
flip the inverter, thus execute the OR behavior.  

The CT-Circuit design and working mechanism for all logic 
types will be explained using the CT-margin function in this 
paper. Therefore, to further elucidate the relationship between 
CT-margin function and working mechanism of CT-logic gates, 
consider a generic crosstalk capacitive network with ‘n’ number 
of input aggressors as shown in Fig.3. The voltage induced on 
victim net can be calculated, by applying KVL, as follows 

𝑉𝑉𝐼𝐼𝑉𝑉 = �𝐶𝐶1
𝐶𝐶𝑇𝑇
𝑉𝑉1 + 𝐶𝐶2

𝐶𝐶𝑇𝑇
𝑉𝑉2. . . + 𝐶𝐶𝑛𝑛

𝐶𝐶𝑇𝑇
𝑉𝑉𝑛𝑛  � . . . (I) 

Where, 𝐶𝐶1,𝐶𝐶2 …𝐶𝐶𝑛𝑛, are capacitances from respective 
aggressors to the Vi net. 𝐶𝐶𝑇𝑇 is the total capacitance on Vi net, 

w1 w2

AND2 0.8 1 1 CTM(2CC) 1  :  1

OR2 4 1 1 CTM(CC) 1  :  3

Width Ratio 
(PMOS:NMOS)

Gate CC (fF)
Aggressor Weights Margin 

Fuction

 
Fig.2 Crosstalk Basic Gates: (i) AND Gate Circuit Schematic, (ii) OR Circuit Schematic, (iii) Simulation response of AND and OR gates. 

                 
Fig.3 Capacitive Network in a Generic Crosstalk Gate 
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which is,  
𝐶𝐶𝑇𝑇 = 𝐶𝐶1 + 𝐶𝐶2 … + 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐶𝐶𝑑𝑑𝑑𝑑; 

𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 = Inverter Gate Capacitance, 
𝐶𝐶𝑑𝑑𝑑𝑑 = Discharge transistor drain to source capacitance 

The final voltage levels on input aggressors, which are given by 

𝑉𝑉1,𝑉𝑉2 …𝑉𝑉𝑛𝑛 in equation (I), can be formulated as voltage sources, 
given by,  

𝑉𝑉𝑉𝑉 = 𝐿𝐿𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷; 
Where, 𝐿𝐿𝑉𝑉  represents the logic leve𝑙𝑙, i.e.,  

 𝐿𝐿𝑉𝑉 = � 0     𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙 0
1   𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙 1  

The capacitances given to input aggressors are in integer 
multiples of a constant CC specific to each gate. Therefore,  𝐶𝐶𝑉𝑉 =
 𝑤𝑤𝑉𝑉 ∗ 𝐶𝐶𝐶𝐶; where, 𝑤𝑤𝑉𝑉  is the integer multiplying factor 
representing the weighted strength of each aggressor. The 
equation (I) now modifies to  

𝑉𝑉𝐼𝐼𝑉𝑉 = 𝐶𝐶𝐶𝐶
𝐶𝐶𝑇𝑇

.𝑉𝑉𝐷𝐷𝐷𝐷.𝑚𝑚 . . . (II) 
Where, m = 𝑤𝑤1𝐿𝐿1 + 𝑤𝑤2𝐿𝐿2. . . + 𝑤𝑤𝑛𝑛𝐿𝐿𝑛𝑛. m evaluates to integer 
values. The CT-margin function of each gate can be related to 
Vi net voltage as follows. Consider given logic gate is 
associated with the CT-margin function 𝐶𝐶𝐶𝐶𝑀𝑀(𝑘𝑘.𝐶𝐶𝐶𝐶) (k takes 
integer values), then for all the input combinations that produce 
logic output 0, the Vi net voltage computed is greater than 
inverter trip point (𝑖𝑖. 𝑒𝑒. ,𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼) and m is greater than or 
equal to k (i.e., m ≥ k). Similarly, for all input combinations that 
produce logic output 1, m is less than k ( i.e., m < k) and Vi net 
voltage is less than inverter trip-point (𝑉𝑉𝐼𝐼𝑉𝑉 <  𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼). Table I 
gives the logic design table for AND2 and OR2 gates, which 
lists the CC values, aggressor weights, and margin function. It 
also lists the PMOS to NMOS ratio for two gates. The logic 
design table summarizes the mechanism and circuit aspects of 
crosstalk logic gates.   

B. Complex Logic Gates 
By increasing the fan-in (i.e., the number of input 

aggressors), more interesting complex logic functions can be 

realized because of the increased coupling capacitances and 
CT-margin function choices. The circuit schematic of a generic 
3-input Crosstalk gate is shown in Fig.4(i). Table. II is a Logic 
Design table that lists CC  and wi values, CT-margin function, 
and PMOS to NMOS width ratio for all 3-input complex-logic 

functions that are implemented.  For logic design, each gate 
receives a specific quantized CC value and different aggressor 
weights(wi) as given in the table. The input aggressors can be 
assigned equal or unequal coupling capacitances. Gates with 
equally coupled aggressors are called homogeneous CT-Logic 
gates and unequally coupled aggressors are called 
heterogeneous CT-Logic gates. These homogenous and 
heterogeneous coupling choices further enhance the scope of 
complex logic functions that can be implemented efficiently 
through the CT-Computing mechanism.  

III. CROSS-TALK POLYMORPHIC LOGIC GATES 
It can be observed from the circuit schematics, Table. I and 

Table. II that unlike CMOS circuit style where we have fixed 
patterns of series and parallel connection of switches 
(transistors) for each logic type, CT-logic circuits are of 
uniform pattern with the only difference in their coupling 
capacitances. That means, if the coupling capacitances from 
inputs to the Vi net can be altered at runtime, the logic behavior 
of the gate can also be altered. This ability to alter the runtime 
logic behavior could pave the way to design a new kind of 
polymorphic/reconfigurable logic circuits based on CT-
Computing.  Instead of trying to achieve the run-time alteration 
of coupling capacitances by controlling material properties or 
by constructing novel devices for this purpose, an alternate path 
can be chosen where the Vi net is coupled with an additional 
control aggressor (Ct). The transition of the signal on Ct would 
augment an extra charge/voltage on to the Vi net, which is 
equivalent to run time alteration of the capacitance coupled to 
the Vi net. This extra voltage induced on the Vi net would 
actually disturb the intended logic behavior of the gate. 
However, if this extra voltage induced is engineered properly, 

              
Fig.4 Crosstalk Complex logic Gates: (i) A generic schematic representing all 3-input complex logic functions ii) Simulations response of 3-input complex 
logic functions (AND3, CARRY, OR3, AO21, OA21).  
 

TABLE II 
CROSSTALK LOGIC DESIGN TABLE FOR COMPLEX GATES 
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the logic behavior of the gate can be astutely morphed such that 
a new functional pattern can emerge and give rise to 
polymorphic gates. We show polymorphism between all the 
logic functions discussed in the previous section; homogeneous 
to homogeneous logic: AND2-OR2, AND3-OR3, AND3-
CARRY, OR3-CARRY; heterogeneous to heterogeneous logic: 
AO21-OA21; homogeneous to heterogeneous logic: AO21-
AND3, AO21-OR3, AO21-CARRY, OA21-AND3, OA21-OR3, 
OA21-CARRY.  

For a generic CT-Polymorphic gate, the control aggressor Ct 
will be coupled to Vi net through capacitance 𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑤𝑤𝐶𝐶𝐶𝐶  is the 
weight signifying the control aggressor’s strength). The Vi net 
voltage equation (II) now turns to,  

𝑉𝑉𝐼𝐼𝑉𝑉 =
𝐶𝐶𝐶𝐶
𝐶𝐶𝑇𝑇

.𝑉𝑉𝐷𝐷𝐷𝐷. (𝑚𝑚 +  𝑤𝑤𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶) 

             Where, m = 𝑤𝑤1𝐿𝐿1 + 𝑤𝑤2𝐿𝐿2 . . . + 𝑤𝑤𝑛𝑛𝐿𝐿𝑛𝑛, and   

𝐿𝐿𝐶𝐶 𝐶𝐶 = �  0 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝐶𝐶𝑐𝑐  𝑖𝑖𝑠𝑠 𝑙𝑙𝑙𝑙𝑤𝑤 𝑣𝑣𝑙𝑙𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒
1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝐶𝐶𝑐𝑐  𝑖𝑖𝑠𝑠 ℎ𝑖𝑖𝑙𝑙ℎ 𝑣𝑣𝑙𝑙𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒 

The CT-margin function is an abstraction for logic behavior 
in CT-Computing. Therefore, the transformation of the CT-
logic gate’s behavior from one function to the other function 
would also mean that there is an effective transformation in 
their margin-functions.  The CT-Polymorphic logic gate 
evaluates to 0 (at node FI) only when, 𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼. The 
aggressor weights and CC are tuned such that 𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 only 
when, 
                             𝑚𝑚 ≥ (𝑘𝑘 −  𝑤𝑤𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶)   
 Therefore, for a CT-Polymorphic gate to evaluate to 0 at the 
output node FI, the input logic levels (𝐿𝐿𝑉𝑉), thus m should 
satisfy the following conditions,  

𝑊𝑊ℎ𝑒𝑒𝑐𝑐 𝐿𝐿𝐶𝐶 𝐶𝐶 = �0, 𝑚𝑚 ≥ (𝑘𝑘)             
1, 𝑚𝑚 ≥ (𝑘𝑘 −  𝑤𝑤𝐶𝐶𝐶𝐶) 

Therefore, the CT-margin function transforms as follows,  

𝑊𝑊ℎ𝑒𝑒𝑐𝑐 𝐿𝐿𝐶𝐶 𝐶𝐶 = �0, 𝐶𝐶𝐶𝐶𝑀𝑀(𝑘𝑘.𝐶𝐶𝐶𝐶)                
1, 𝐶𝐶𝐶𝐶𝑀𝑀((𝑘𝑘 −  𝑤𝑤𝐶𝐶𝐶𝐶).𝐶𝐶𝐶𝐶) 

In other words, when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0, the inverter can flip its state 
only when it receives the voltage through a total coupling 
capacitance of k.CC; therefore, the gate’s logic behavior 
corresponds to the margin function CTM(k.CC). However, 
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, an extra voltage would be induced through 
capacitance wCt.CC, leaving only (k-wCt)CC capacitance 
margin; i.e., the inverter can now flip its state just with the 
voltage induced due to capacitance greater than or equal to 
(k- wCt)CC. Therefore, the margin function and its 
corresponding logic behavior will be transformed to CTM((k-
wCt)CC).    

We have implemented various 2-input and 3-input CT-
polymorphic logic circuits. Fig.5 shows the CT-Polymorphic 
AND2-OR2 Circuit and its simulation response. Table.III 
presents the circuit design parameters for AND2-OR2 gate, 

which are CC, input and control aggressors’ weights, and PMOS 
and NMOS widths ratio. The table also presents the effective 
transformation of CT-margin function with respect to control 
logic 𝐿𝐿𝐶𝐶 𝐶𝐶 and its corresponding function.  It can be observed 

TABLE IV 
CROSSTALK LOGIC DESIGN TABLE FOR 3-INPUT POLYMORPHIC GATES 

 

w1 w2 w3 wCt

0 CTM(3CC) AND3

1 CTM(CC) OR3

0 CTM(3CC) AND3

1 CTM(2CC) CARRY

0 CTM(2CC) CARRY

1 CTM(CC) OR3

0 CTM(3CC) OA21

1 CTM(2CC) AO21

0 CTM(4CC) AND3

1 CTM(2CC) AO21

0 CTM(4CC) AND3

1 CTM(3CC) OA21

0 CTM(3CC) OA21

1 CTM(1CC) OR3

0 CTM(2CC) OA21

1 CTM(1CC) OR3

0 CTM(4CC) CARRY

1 CTM(3CC) AO21

0 CTM(5CC) OA21

1 CTM(4CC) CARRY
1  :  1

1  :  2

1  :  2

1  :  3

1  :  5

1  :  2

Logic 
Function 

1  :  2

1  :  1

1  :  3

1  :  2

Gate
CC 

(fF)
Aggressor Weights

LCt
Margin 

Function

1

AND3-
OR3

1 1 1 1 2

AND3-
CARRY

0.9 1 1 1

1

CARRY-
OR3

4.5 1 1 1 1

OA21-
AO21

0.7 1 1 2

1

AND3-
AO21

0.28 1 1 2 2

AND3-
OA21

0.21 1 1 2

1 2 1

OA21-
OR3

0.97 1 1 2 2

Width 
Ratio 
(P:N)

OA21-
CARRY

0.6 2 2 3 1

CARRY-
AO21

2.2 2 2 3 1

AO21-
OR3

3 1

Fig.5 2-input Crosstalk-Polymorphic Logic Gate: i) AND2-OR2 Schematic, ii) AND2-OR2 Simulation response   
 
 

TABLE III 
CROSSTALK LOGIC DESIGN TABLE FOR AND2-OR2 GATE 

 

Width Ratio 

w1 w2 wCt PMOS:NMOS

0 CTM(2CC) AND2

1 CTM(CC) OR2
1  :  1

AND2-
OR2

1 1 1 1

Gate
CC 

(fF)

Ag Weights
LCt

Margin 
Function

Logic 
Function 
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from the simulation response (Fig.5) of the circuit that when 
𝐿𝐿𝐶𝐶 𝐶𝐶 = 0 the circuit responds as OR gate, whose behavior is 
abstracted to CT-margin function CTM(2CC) in the table. But 
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, the circuit responds as AND gate, whose 
behavior is abstracted to CTM(CC) in the table. Next, we have 
implemented ten different types of 3-input polymorphic circuits 
which are listed in Table.IV. In order to limit the space, all these 
circuits are represented by single schematic in Fig.7 as all of 
these gates have uniform circuit topology with only difference 
in their design parameters. Table.IV lists all the circuit-design 
parameters for different gates. The simulation response of all 
the circuits are presented in Fig.7, where the first panel shows 
Dis and Ct signals; the second panel shows the input 
combinations fed through A, B and C; and rest of the panels 
show the response of different gates at node F. For AND3-OR3 
circuit, the inputs A, B, C, has the same coupling CC (i.e., 
w1=w2= w3=1), while Ct aggressor receives 2CC capacitance 
(i.e., wCt=2). When 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0, the margin function for AND3-

OR3 gate is CTM(3CC), which makes it behave as AND3 as 
shown in Fig.7 panel-3. Whereas, when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1,  the Ct 
aggressor augments an extra charge through coupling 
capacitance 2CC and effectively manipulates the margin 
function to CTM(CC).  Following the function CTM(CC), the 
transition of either A or B or C is now sufficient to flip the 
inverter; thus, the gate biases and operates as an OR3 gate as 
shown in Fig.7 panel-3. It can be observed that the circuit 
responds as AND3 when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0,  for first eight input 
combinations (000 to 111), whereas, it responds as OR3 when 
𝐿𝐿𝐶𝐶 𝐶𝐶 = 1,  during next eight combinations (000 to 111). For 
AND3 gate, if control aggressor is given just CC coupling 
strength instead of 2CC in the previous case, CTM(3CC) 
manipulates to CTM(2CC), which becomes polymorphic AND3-
CARRY gate as given the table. The corresponding simulation 
response is in Fig.7 panel-4. The next gate is AO21-OA21 
which is a heterogeneous to heterogeneous logic. The coupling 
weights of aggressors are w1=w2=1, w3=2 and wct=1 
(Table.IV). The margin function, CTM(3CC), alters to CTM(2CC) 
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1 and gives CT-polymorphic AO21-OA21 gate 
(circuit response is in panel-6). The next six gates are 
homogeneous to heterogeneous logic type. For AND3-AO21 
gate, the aggressor weights are w1=w2=1, w3=2 and wct=2 (note 
that the weights of inputs are heterogeneous). The margin 
function for AND3, in this case, is CTM(4CC). The control 
aggressor biases it to CTM(2CC) and operates the gate as AO21  
(circuit response is in panel-7). In the previous case, if Ct is 
given CC strength instead of 2CC, the margin function 
manipulates from CTM(4CC) to CTM(3CC), giving rise to CT-
polymorphic AND3-OA21 gate as shown in Fig.7 pane-8. 

 
Fig.7 Simulation responses of 3-input CT-Polymorphic logic gates  

             
Fig.6 Generic 3-input Crosstalk-Polymorphic Logic Gate Schematic  
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Similarly, CARRY-OR3, OA21-OR3, AO21-OR3, and OA21-
CARRY, and AO21-CARRY results are shown in Fig. 7.  

Crosstalk-Polymorphic Cascaded Circuit Example 
This section demonstrates cascading polymorphic gates to 

implement a block/module level polymorphic circuit. Fig.8 is a 
2-bit Multiplier-Sorter-Adder circuit. The circuit uses 31 gates in 
total, out of which 25 are crosstalk gates, and 6 are inverters. 16 
out of 25 crosstalk gates are polymorphic gates, which are 
efficiently employed to switch the circuit between the multiplier, 
sorter and adder operations. Two control signals, C1 and C2, are 
given to a control circuitry shown in the inset figure, which 
generates C3-C5 control signals.  C1-C5 signals are employed in 
the circuit to switch the circuit between three functions. Fig.9 
shows the simulation response of the circuit; different operation 
modes of the circuit are annotated on top, which are, Multiplier 
(M), Sorter (S), and Adder (A). The first panel in the figure shows 
Dis signal; Dis=1 is the discharge state (DS) and Dis=0 is the 
Logic Evaluation (LE) state. The second panel shows the control 
signals C1 and C2, whose values as 01, 11 and 10 corresponds to 
the multiplier, sorter, and adder operations, respectively. Third 
and fourth panels show the 2-bit inputs A[1:0] and B[1:0]. The 
subsequent four panels show the 4-bit responses of the circuit, 
Y[3:0]. In order to effectively demonstrate the transformation of 
the circuit, control signals are given such that the circuit switches 
alternately between multiplier, sorter, and adder modes, and in 
each set of these modes, common input values are fed through 
A1A0 and B1B0. For example, for the first input combinations, 
11 and 10, the multiplier operation gives 0110 as output while the 
succeeding sorter and adder operations give 1110 and 0101 
outputs, respectively. Similarly, for the second inputs, 10 and 
01, M, S, and A operations give 0010, 1100 and 0011 outputs, 
respectively. In a similar fashion, few other combinations are 
shown in the next stages. The circuit consumes only 155 
transistors in total. 

IV. COMPARISON 
In this section, we compare the CT-polymorphic logic 

circuits with respect to existing polymorphic approaches 
available in the literature and disucuss its advantages and 
disadvantages (Table V). The reconfigurability in CT-
polymorphic circuits is achieved by using the same Crosstalk 
aggressor-victim technique that actually performs the logic 
computation, which enables deliberate and very fast 
reconfiguration of the gates. Despite of its radically different 
logic and reconfigurability aspects, the working mechanism in 
crosstalk computing is based on well-known capacitive 
electrostatics, which makes it easily realizable through existing 
process setups and fabrication techniques. The complex gates 
listed for other approaches in the table are constructed by 
cascading polymorphic NAND-NOR, AND-OR gates 

C1 C4

C3

C5

C2

G6A0
B0

A1
B1

C5

C1

C2
Y3

A0

G5
G1

G2

G3

G4

C2

G11

Y2

C1

A1

0

C1
0

C1

G22

C2

G17

0
C4

C5

C3

A0

C5

C4

Y0

G7

G8

G9

G10B0

B1

G13

G14

G15 G16 G18

G19
0

Y1

G20

G21

G23

G30

G24
G25 G26

G270

G28

G29

C5

G12

G31

Control Circuitary
C1

C3

0

B0
 

Fig.8 Crosstalk Polymorphic Multiplier-Adder-Sorter circuit 

 
Fig.9 Crosstalk Polymorphic Multiplier/Adder/Sorter circuit simulation response 
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presented in [1] and [20]. The traditional approach (‘CMOS’ 
column in the table) is multiplexer based, where independent 
stand-alone circuits are designed and selected through a 
multiplexer. Though this approach is mainstream and can be 
implemented in any technology node (we have designed in 
16nm), it consumes large resources as listed in the table.  

To the best of our knowledge, a wide range of compact 
single-stage and cascaded polymorphic complex logic 
implementations like in Crosstalk logic were not reported in 
other approaches. However, the scalability limitations that 
needs to be overcome in CT-computing are i) ability to achieve 
the efficient Crosstalk coupling networks, ii) Noise margins of 
the CMOS inverter that limits the fan-in of the circuits, in turn 
the ability to construct many single stage/gate complex CT-
polymorphic logic circuits (cascaded polymorphic circuits are 
the solution), and iii) CT-Computing friendly polymorphic 
logic synthesis algorithms/tools need to be developed for EDA 
(Electronic Design Automation) flows. In our other works 
[29][30], we have addressed several of these issues. The 
evolved circuits discussed in the table V do possess a unique 
merit that we can construct polymorphic circuits with 
interesting control parameters such as temperature, supply-
voltage, light, radiation, etc.[1] (which are not done for in 
Crosstalk circuit style).  These features make them ideal 
candidates for sensor-based and adaptable circuit applications. 
It is to be noted that the CT-circuit presented in this paper are 
only controlled using a control-voltage. Experimentally, 
evolution techniques can be also applied to Crosstalk Circuits 
to explore reconfigurability potentials based on all possible 
control parameters.    

Next, to compare with emerging reconfigurable transistors 
we have considered ambipolar Si nanowire FET (SiNWFET) 
by De Marchi et.al [20]. In this approach, a nanowire transistor 
can be configured to either n-type or p-type with a control 
voltage. Limitations of this approach are [19][20], density 
benefit is limited, additional circuitry required to swap power 
rails for pull-up and pull-down networks, non-robust device 
response, and requirement of new fabrication steps in the 
existing process flows. Also, compared to other exotic device-
based approaches [5], CT-Computing can be achieved through 
existing fabrication techniques. Thus, it augments the 

conventional CMOS based device, circuit, and manufacturing 
paradigms. Finally, the CT-Polymorphic approach consumes 
fewer transistors than any other transistors based polymorphic 
circuit approach in the literature. By averaging the transistor 
count of all the circuits in Table.V, the CT-Circuits consume      
64%, 58%, and 40% less transistors compared to CMOS, 
evolved circuits, and Ambipolar Circuit techniques, 
respectively.  

V. BENCHMARKING 
The switching energy and performance for all the crosstalk 
gates presented above are characterized and benchmarked with 
their counterpart CMOS implementations (Table VI). The 
CMOS implementation is multiplexer based, where 
independent stand-alone circuits are designed and selected 
through a multiplexer. Both the circuits are implemented and 
benchmarked using 16nm PTM tri-gate transistor models. The 
benefits are huge for CT-Computing circuits. As shown in 
Table.VI, the CT-Polymorphic circuits achieve 2.8x density, 
~1.5x performance, and ~2x power benefits. The benefits are 
primarily due to reduced transistor count and are projected to 
be higher for large-scale designs. A comparison of CMOS vs 
Crosstalk circuit can illustrate the source of these benefits. For 
an example, the AND3-CARRY polymorphic circuit, with its 
Boolean expression, ABCS’+ S(AB+BC+CA), requires just 5 
transistors compared to 30 transistors in CMOS based 
implementation. Thus, in best case the transistor reduction is 
6x. For the polymorphic Multiplier-Sorter-Adder unit, the 
benefits are 3.4x and 62% in terms of density and power with 
comparable performance with respect to CMOS at 16nm. It is 
to be noted that owing to the reduced transistor count the 
interconnection requirements would also be considerably less 
at standard-cell level.  

VI. CONCLUSION 
Crosstalk Logic is a novel and radically different way of 

doing the logic computation. The paper develops a detailed 
framework for polymorphic logic circuits in Crosstalk Logic 
and shows implementation of a wide range of crosstalk 
polymorphic logic gates. The gates presented are 
reconfigurable AND-OR, AO21-OA21, AND3-AO21, AND3-
OA21, OR3-AO21, OR3-OA21, AND3-CARRY, CARRY-

TABLE V. COMPARISON OF POLYMORPHIC TECHNOLOGIES  
Technology CMOS Evolved Circuits[3] Ambipolar 

NWFET[7] 
Crosstalk-
Polymorphic 

Mechanism 
 

Circuit duplication 
and use of 
multiplexers to 
select redundant 
blocks 

A control 
voltage biases 
the circuits 
different 
operation  

Temperature 
variation effects 
on devices bias 
the circuits to 
different modes  

Power supply 
variation effects 
on devices biases 
the circuits to 
different mode 

Band structure of 
the transistor  is 
altered from p-type 
to n-type using a 
control gate  

Signal Interference 
through interconnect 
crosstalk  

Control parameter Select Signal  Control Voltage  Temperature Supply Voltage  Control voltage  Control Voltage 
Process-
Technology Node 

16nm 
(independent)  

 0.35um (strongly dependent)  30nm (dependent) 16nm (friendly to 
advanced nodes)  

Scalability  
Dependence  

Synthesis  Evolution 
limitation  
(Genetic 
Algorithms)   

Evolution 
limitation  
(Genetic 
Algorithms)   

Evolution 
limitation  
(Genetic 
Algorithms)   

Large scale 
fabrication of 
nanowires and 
reliable ambipolar 
property  

-Crosstalk Coupling 
network  
-Noise Margins  
-Polymorphic Logic 
Synthesis  

Trade-off Vs. 
Custom ASIC 

Density, power 
and performance 
penalties for 
redundant blocks 

Power and 
performance 
penalties and 
limited density 
benefits 

Power and 
performance 
penalties and 
limited density 
benefits 

Power and 
performance 
penalties and 
limited density 
benefits 

Limited density 
benefits 

Density, Power and 
Performance benefits   
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OR3, CARRY-AO21, OA21-CARRY and Inv-Buf. Our circuit 
evaluation and benchmark comparisons show that CT-
Polymorphic logic approach is very compact (i.e less device 
count) and efficient than other polymorphic approaches.  
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TABLE VI 
 BENCHMARKING OF CROSSTALK LOGIC GATES WITH RESPECT TO CMOS 

NAND2 232.1 122.3 47.31 4.12 4.06 1.43

NOR2 202.7 260.5 -28.5 5.61 5.86 -4.492

AOI21 154.4 207 -34.07 5.73 5.51 3.94

OAI21 229.3 135.2 41.03 4.36 5.17 -18.52

NAND3 347.7 112.5 67.65 4.98 4.18 16.11

Carry 1198.8 326.59 72.75 14.58 8.69 40.4

NAND2-NOR2 796.14 139.03 82.54 13.46 4.32 67.89

NAND3-NOR3 1472.6 172.02 88.32 13.21 5.12 61.22

AOI21-OAI21 698.42 190.52 72.72 9.52 5.39 43.38

NAND3-AOI21 1091.3 641.38 41.23 14.08 14.14 -0.42

NAND3-OAI21 874.99 959.44 -9.65 11.69 19.4 -65.92

NOR3-AOI21 1030.4 661.67 35.78 17.78 12.65 28.86

NOR3-OAI21 938.88 546.89 41.75 18.14 11.47 36.8

CARRY-OR3 4258.6 420.15 90.13 15.02 8.3 44.74

Carry-AND3 3059.9 289.69 90.53 16.77 7.39 55.91

Carry-AO21 2332.9 481.31 79.37 28.92 10.56 63.48

OA21-Carry 2004.2 366.91 81.69 15.67 9.97 36.35

MUL-SORT-
ADD

16.2 fJ 6.104 fJ 62.41 61.5 54.4 11.56

Switching Energy (aJ) Performance (ps)

GATES CMOS
Cross-

talk
%Redu-

ction
CMOS

Cross-
talk

% Redu-
ction

                            
 


	I. INTRODUCTION
	II. Crosstalk Computing
	A. Basic Logic Gates
	B. Complex Logic Gates

	III. Cross-Talk Polymorphic Logic Gates
	Crosstalk-Polymorphic Cascaded Circuit Example

	IV. Comparison
	V. Benchmarking
	VI. Conclusion
	VII. REFERENCES

