
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— The functionality of Polymorphic circuits can be
altered using a control variable. Owing to the multi-functional
embodiment in polymorphic-circuits, they find a myriad of useful
applications such as reconfigurable system design, resource sharing,
hardware security, and fault-tolerant circuit design, etc. The
polymorphic circuit approaches available in literature so far are
either based on custom nonlinear circuit designs or based on special
emerging devices such as ambipolar FET, configurable magnetic
devices, etc. While some of these approaches are inefficient in
performance, the other approaches involve exotic devices. We have
proposed a novel polymorphic circuit design approach based on
Crosstalk-Computing, where deterministic signal interference
between nano-metal lines is leveraged for logic computation and
reconfiguration purposes. In this paper, we elaborate upon the
polymorphic circuit design in Crosstalk-Computing, present a
comprehensive list of polymorphic logic gates designed, and
characterize and benchmark our circuits with respect to CMOS
circuit implementations. The ability to design a wide range of
polymorphic logic circuits (basic and complex logics) that are
compact in design and minimal in transistor count is unique to
Crosstalk Computing, which leads to benefits in the circuit Power,
Performance and Area (PPA). Our circuit designs, simulation, and
PPA characterization results show that the polymorphic crosstalk
circuits provide 3x improvement in transistor count, 2x
improvement in switching energy, and 1.5x improvement in speed
for polymorphic logic circuits. In a best-case, the transistor count
reduction is 6x. We present a cascaded circuit example of a
polymorphic Multiplier-Sorter-Adder circuit and benchmark it
with respect to the CMOS implementation.

Index Terms— Crosstalk-Computing, Crosstalk Circuits,
Reconfigurable Circuits, Polymorphic Circuits.

I. INTRODUCTION
OLYMORPHIC logic circuits are rich in their functional
behavior, where a control variable can deterministically

morph the circuit’s behavior between multiple functions [1].
For example, an AND gate can change as an OR gate and vice-
versa. Thanks to their ability to transform intrinsically,
polymorphic circuits find their use in a myriad of applications
[2-8] such as reconfigurable circuits/systems design[2][3],
resource sharing[2][3], multifunctional adaptive systems [4],
hardware security[5], fault tolerance [6], and self-test
circuits[7][8][9]. Besides, as scaling down of feature size in
Integrated Circuits (ICs) is approaching the physical limits, the
miniaturization trend of ICs (Moore’s Law) is relaxing.
Therefore, developing alternate techniques that try to push the
horizons of Moore’s Law can be of tremendous potentials.
Polymorphic circuits can be one such technique that tries to
sustain Moore’s Law because they increase the circuit
functionality in a given footprint by reusing the circuits to
execute different functions. However, the tradeoffs in achieving

such polymorphic circuits make them go or no-go for
applications.

 To be considered as a truly polymorphic circuit, along with
the innate multifunctional nature, the control between different
functions should be enabled by inherent device characteristics
and/or external environmental influences [1]. The Polymorphic
circuits evolved using genetic algorithms [13] were extensively
researched. These evolved circuits can morph their functional
behavior based on different environmental control variables
such as temperature, supply-voltage, control-signal, light,
radiation, etc. They find interesting applications in sensor
circuits that morph and adapt their behavior in different
environments [14], especially in extreme conditions of
temperature, radiation, microwaves, etc. (for example in space
electronics) [15][16]. The disadvantages [17] they face are
technology dependency, scalability and inefficiency in speed
and power, because of which the evolved circuits do not find
applications in mainstream digital circuits/systems.

Another approach actively pursued is chaos computing [18],
in which non-linear dynamics in transistors and circuits are
captured to implement multifunctional circuits. But these
circuits are custom nonlinear/mixed-signal circuit designs for
digital circuits. More recently, polymorphic circuits are also
designed using emerging tunable polarity transistors [19-23],
which can be configured either as p-type or n-type based on a
control signal. These morphable transistors foster various fine-
grained polymorphic circuit schemes. However, these novel
devices require complex device engineering compared to
mainstream CMOS devices, and the circuit schemes necessitate
additional circuitry to switch the power rails when the
transistors change as p-type/n-type [20]. The other alternate
approaches using emerging spintronic devices were also
proposed [5], but they rely on complex information encoding
schemes through spin-polarized currents and bipolar voltages,
etc. Consequently, they are a significant departure from existing
computational device and circuit paradigms.

We have proposed a novel computation concept called
Crosstalk-Computing (CT-Computing) [24] and implemented a
wide range of compact and efficient polymorphic circuits in this
approach [25]. In the CT-Computing technique, the signal
interference between adjacent metal lines is astutely engineered
to a logic principle. In contrast to the traditional Switch based
logic computations, a deterministic superposition of crosstalk
coupled input signals produces the logic operation in CT-
Computing. The counterpart of connecting switches/transistors
in different patterns to achieve different logic is tuning the
crosstalk coupling capacitances in CT-Computing. For
polymorphism, an additional control signal is used, which

Crosstalk-Computing based Gate-Level
Reconfigurable Circuits

Naveen Kumar Macha, Bhavana Tejaswini Repalle, Md Arif Iqbal, Mostafizur Rahman

P

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

biases the circuit to alter its functional behavior [23]. We have
also explored the application potentials of CT-Polymorphic
circuits in [26] and [27].

 In this paper, we discuss the CT-Computing concept in
detail and present a comprehensive list of crosstalk
polymorphic circuit designs and their simulation responses. The
polymorphic gates shown are AND-OR, AND-AO21(AND-
OR-21, i.e. (AB)+C), AND-OA21 (OR-AND-21, i.e. (A+B)C),
AND-CARRY(AB+BC+CA), OR-AO21, OR-OA21, OR-
CARRY, AO21-OA21, CARRY-AO21, CARRY-OA21, and
Inverter-Buffer (Inv-Buf). We have also presented a cascaded
polymorphic circuit example of a 2-bit Multiplier-Sorter-Adder
designed using the above Crosstalk-Polymorphic (CT-
Polymorphic) logic gates. Finally, we characterized the
performance metrics of Crosstalk-Circuits (CT-Circuits) and
benchmarked them with respect to CMOS implementations.

The rest of the paper is organized as follows. Section II
discusses the CT-Computing concept, provides the intuition for
logic implementation and presents the circuit techniques to
implement basic and complex logic circuits. Section III
discusses polymorphism in CT-Computing and shows a wide
range of CT-Polymorphic gates that can morph between
different operations. In Section IV we present the comparison
of CT-Polymorphic circuits with other approaches in the
literature. In Section V we present the benchmarking results.
Finally, Section VI concludes the paper.

II. CROSSTALK COMPUTING
The Fig.1(i) shows an overview of CT-Computing Fabric,

which majorly comprises of four components, Crosstalk Layer
(CTL), Active Devices, Interconnects, and Vias. The CT layer
which computes the logic is a metal layer/layers comprised of
capacitively coupled metal lines called Aggressors (Ag) and
Victim (Vi). Interconnects and Vias serve their regular purpose,
along with their contribution to coupling capacitance in CTL.
The active devices depicted are FinFETs on SOI substrate. The
purpose of transistors is to accurately control and reconstruct
the signals, which would be discussed in the following sections.
The aggressors serve as inputs, and the victim serves as the
output. The Fig.1(ii) illustrates the aggressor-victim scenario of
crosstalk-logic. It shows the capacitive interference of the
signals for logic computation— the transition of the signals on

two aggressor metal lines (Ag1 and Ag2) induce a resultant
summation charge/voltage on the victim metal line (Vi) through
capacitive couplings CC. Since this phenomenon follows the
charge conservation principle, the victim net voltage is
deterministic and possesses the information about signals on
two aggressor nets; its magnitude depends upon the coupling
strength between the aggressors and the victim net. The
coupling capacitance is directly proportional to the relative
permittivity of the dielectric and lateral area of metal lines
(which is length multiplied the vertical thickness of metal lines)
and inversely proportional to the distance of separation of metal
lines. Tuning the coupling capacitance values using the
variables mentioned above provides the engineering freedom to
tailor the induced summation signal to the specific logic
implementation.

Fig.1(iii) depicts the notion of implementing logic gates
(AND and OR) using crosstalk signal interference. Input signal
transitions induce a voltage proportional to coupling
capacitances. As shown in Fig.1(iii), for AND gate, the inputs
coupling, CA, can be chosen such that the magnitude of the
voltage induced on output net (Vi) is greater than a selected
threshold voltage VT only when both inputs transition from 0 to
1 (i.e., for input combination 11). The threshold voltage VT

differentiates logic 0 and 1. When only one of the input
transitions (input combinations 01 and 10), the voltage induced
on the victim net is below the VT; hence, the output can be
considered as logic 0. Thus, as shown in Fig.1(iii), AND gate
functionality can be realized using the crosstalk signal
interference mechanism. Similarly, OR gate functionality can
be realized just by increasing the coupling capacitance, which
can be done by appropriately tuning the physical dimensions or
choosing high-k dielectric material or both. The intuition for
OR gate implementation is also shown in Fig.1(iii). Compared
to AND gate, for OR gate, the coupling capacitance CO is
increased (CO > CA) such that the transition of either of the input
signal from 0 to 1 is now sufficient to induce a voltage above
the logic threshold (VT). Therefore, input combinations, 01, 10,
and 11 evaluates to logic output 1, as an OR gate. Practical
realization of Crosstalk-Logic (CT-logic) circuits and their
reliable and robust operation in cascaded circuits requires
additional circuit techniques to be augmented to the intuitive
idea described above, which is presented next.

Fig.1: (i) Abstract view of Crosstalk-Computing fabric, (ii) Crosstalk-Computing Mechanism, (iii) Implementing Logic Gates based on CT-Computing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

A. Basic Logic Gates
Although properly engineered and coupled nano-metal lines are
sufficient to emulate the logic behavior [24] in CT-Computing,
the output net (Vi) which collects the crosstalk charge needs to
satisfy three conditions to achieve deterministic functionality in
all sorts of real circuit environments. First, the Vi net needs to
start from a known initial state. Second, it should remain
floating during logic evaluation to collect the crosstalk charge.
Third, the output node should be able to drive the fanout gates
in real circuits and maintain the signal integrity of binary
voltage levels. As shown in Fig.2, the first two conditions are
met by connecting a discharge transistor to the Vi net, and the
third condition is met by adding an inverter to the Vi net.
Fig.2(i) shows the 2-input AND gate in which input aggressor
nets (A and B acting as Ag1 and Ag2) are coupled to Vi net
through coupling capacitances of value CC (CC values are given
in Table.1). The Dis signal drives the discharge transistor. The

CT-logic gates operate in two alternate states, Discharge state
(DS) and Logic Evaluation state (LE). During DS (enabled by
Dis signal), the floating victim node is shorted to ground
through the discharge transistor and thus starts with a known
initial condition, i.e., 0. The alternate DS states ensure the
correct logic operation during every LE state by clearing off the
charge from the previous logic operation. During LE state (Vi
net is floating) the rise transitions on aggressor nets induce a
proportionate linear summation voltage on Vi net which is
connected here to a CMOS inverter. The inverter acts as a
regenerative threshold function. That is if the voltage computed
on Vi net is above the inverter’s threshold-voltage/trip-point
(𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼), it outputs the logic level 0, and vice-versa; It regenerates
the signals and restores them to full swing. Also, 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 is tunable
by changing PMOS to NMOS width ratios if required. The CT-
logic gates presented in thi

s
paper are designed using the 16nm Predictive Technology
Modeling (PTM) transistors and simulated on SPICE. The
simulation response of the designed AND gate is shown in
Fig.2(iii), where the first panel shows the discharge signal
(Dis), the second panel shows two input signals (A and B) with
00, 01, 10, and 11 combinations given through successive LE
stages (i.e., when Dis=0), and the third panel shows the output
response of the AND gate. For all the circuits, the FI node gives
inverting logic output (NAND, NOR, etc.), and the F node
gives a noninverting logic output (AND etc.). Similarly, OR
gate implementation is shown in Fig.2(ii) and simulation
response is shown in panel-4 of Fig.2(iii) (the input signals in
panel-1 and panel-2 are shown common for both the circuits to
limit the space). The difference between AND and OR gates is
that the coupling strength (CC), as given in the Table. I, is
greater for OR gate than AND; i.e., 0.8fF and 4fF for AND and
OR, respectively. CC is the quantized capacitance specific to
each gate. The input aggressors would receive the coupling
strengths in integer multiples of CC.

 The operation of CT-logic gates would be represented
functionally using a crosstalk-margin function, CTM(CC), which
specifies that the inverter of the CT-logic gate flips its state only
when victim node sees the input transitions through the total

coupling greater than or equal to CC. For example, AND gate
CT-margin function is CTM(2CC). It states that the inverter flips
its state only when the victim node sees the input transitions
through total coupling greater than or equal to 2CC, which
happens only when both inputs are high. Similarly, for the OR
gate (Fig.3(i)), the CT-margin function is CTM(CC); which
means the transition of any one of the aggressors is sufficient to
flip the inverter, thus execute the OR behavior.

The CT-Circuit design and working mechanism for all logic
types will be explained using the CT-margin function in this
paper. Therefore, to further elucidate the relationship between
CT-margin function and working mechanism of CT-logic gates,
consider a generic crosstalk capacitive network with ‘n’ number
of input aggressors as shown in Fig.3. The voltage induced on
victim net can be calculated, by applying KVL, as follows

𝑉𝑉𝐼𝐼𝑉𝑉 = �𝐶𝐶1
𝐶𝐶𝑇𝑇
𝑉𝑉1 + 𝐶𝐶2

𝐶𝐶𝑇𝑇
𝑉𝑉2. . . + 𝐶𝐶𝑛𝑛

𝐶𝐶𝑇𝑇
𝑉𝑉𝑛𝑛 � . . . (I)

Where, 𝐶𝐶1,𝐶𝐶2 …𝐶𝐶𝑛𝑛, are capacitances from respective
aggressors to the Vi net. 𝐶𝐶𝑇𝑇 is the total capacitance on Vi net,

w1 w2

AND2 0.8 1 1 CTM(2CC) 1 : 1

OR2 4 1 1 CTM(CC) 1 : 3

Width Ratio
(PMOS:NMOS)

Gate CC (fF)
Aggressor Weights Margin

Fuction

Fig.2 Crosstalk Basic Gates: (i) AND Gate Circuit Schematic, (ii) OR Circuit Schematic, (iii) Simulation response of AND and OR gates.

Fig.3 Capacitive Network in a Generic Crosstalk Gate

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

which is,
𝐶𝐶𝑇𝑇 = 𝐶𝐶1 + 𝐶𝐶2 … + 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐶𝐶𝑑𝑑𝑑𝑑;

𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 = Inverter Gate Capacitance,
𝐶𝐶𝑑𝑑𝑑𝑑 = Discharge transistor drain to source capacitance

The final voltage levels on input aggressors, which are given by

𝑉𝑉1,𝑉𝑉2 …𝑉𝑉𝑛𝑛 in equation (I), can be formulated as voltage sources,
given by,

𝑉𝑉𝑉𝑉 = 𝐿𝐿𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷;
Where, 𝐿𝐿𝑉𝑉 represents the logic leve𝑙𝑙, i.e.,

 𝐿𝐿𝑉𝑉 = � 0 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙 0
1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙 1

The capacitances given to input aggressors are in integer
multiples of a constant CC specific to each gate. Therefore, 𝐶𝐶𝑉𝑉 =
 𝑤𝑤𝑉𝑉 ∗ 𝐶𝐶𝐶𝐶; where, 𝑤𝑤𝑉𝑉 is the integer multiplying factor
representing the weighted strength of each aggressor. The
equation (I) now modifies to

𝑉𝑉𝐼𝐼𝑉𝑉 = 𝐶𝐶𝐶𝐶
𝐶𝐶𝑇𝑇

.𝑉𝑉𝐷𝐷𝐷𝐷.𝑚𝑚 . . . (II)
Where, m = 𝑤𝑤1𝐿𝐿1 + 𝑤𝑤2𝐿𝐿2. . . + 𝑤𝑤𝑛𝑛𝐿𝐿𝑛𝑛. m evaluates to integer
values. The CT-margin function of each gate can be related to
Vi net voltage as follows. Consider given logic gate is
associated with the CT-margin function 𝐶𝐶𝐶𝐶𝑀𝑀(𝑘𝑘.𝐶𝐶𝐶𝐶) (k takes
integer values), then for all the input combinations that produce
logic output 0, the Vi net voltage computed is greater than
inverter trip point (𝑖𝑖. 𝑒𝑒. ,𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼) and m is greater than or
equal to k (i.e., m ≥ k). Similarly, for all input combinations that
produce logic output 1, m is less than k (i.e., m < k) and Vi net
voltage is less than inverter trip-point (𝑉𝑉𝐼𝐼𝑉𝑉 < 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼). Table I
gives the logic design table for AND2 and OR2 gates, which
lists the CC values, aggressor weights, and margin function. It
also lists the PMOS to NMOS ratio for two gates. The logic
design table summarizes the mechanism and circuit aspects of
crosstalk logic gates.

B. Complex Logic Gates
By increasing the fan-in (i.e., the number of input

aggressors), more interesting complex logic functions can be

realized because of the increased coupling capacitances and
CT-margin function choices. The circuit schematic of a generic
3-input Crosstalk gate is shown in Fig.4(i). Table. II is a Logic
Design table that lists CC and wi values, CT-margin function,
and PMOS to NMOS width ratio for all 3-input complex-logic

functions that are implemented. For logic design, each gate
receives a specific quantized CC value and different aggressor
weights(wi) as given in the table. The input aggressors can be
assigned equal or unequal coupling capacitances. Gates with
equally coupled aggressors are called homogeneous CT-Logic
gates and unequally coupled aggressors are called
heterogeneous CT-Logic gates. These homogenous and
heterogeneous coupling choices further enhance the scope of
complex logic functions that can be implemented efficiently
through the CT-Computing mechanism.

III. CROSS-TALK POLYMORPHIC LOGIC GATES
It can be observed from the circuit schematics, Table. I and

Table. II that unlike CMOS circuit style where we have fixed
patterns of series and parallel connection of switches
(transistors) for each logic type, CT-logic circuits are of
uniform pattern with the only difference in their coupling
capacitances. That means, if the coupling capacitances from
inputs to the Vi net can be altered at runtime, the logic behavior
of the gate can also be altered. This ability to alter the runtime
logic behavior could pave the way to design a new kind of
polymorphic/reconfigurable logic circuits based on CT-
Computing. Instead of trying to achieve the run-time alteration
of coupling capacitances by controlling material properties or
by constructing novel devices for this purpose, an alternate path
can be chosen where the Vi net is coupled with an additional
control aggressor (Ct). The transition of the signal on Ct would
augment an extra charge/voltage on to the Vi net, which is
equivalent to run time alteration of the capacitance coupled to
the Vi net. This extra voltage induced on the Vi net would
actually disturb the intended logic behavior of the gate.
However, if this extra voltage induced is engineered properly,

Fig.4 Crosstalk Complex logic Gates: (i) A generic schematic representing all 3-input complex logic functions ii) Simulations response of 3-input complex
logic functions (AND3, CARRY, OR3, AO21, OA21).

TABLE II
CROSSTALK LOGIC DESIGN TABLE FOR COMPLEX GATES

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

the logic behavior of the gate can be astutely morphed such that
a new functional pattern can emerge and give rise to
polymorphic gates. We show polymorphism between all the
logic functions discussed in the previous section; homogeneous
to homogeneous logic: AND2-OR2, AND3-OR3, AND3-
CARRY, OR3-CARRY; heterogeneous to heterogeneous logic:
AO21-OA21; homogeneous to heterogeneous logic: AO21-
AND3, AO21-OR3, AO21-CARRY, OA21-AND3, OA21-OR3,
OA21-CARRY.

For a generic CT-Polymorphic gate, the control aggressor Ct
will be coupled to Vi net through capacitance 𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑤𝑤𝐶𝐶𝐶𝐶 is the
weight signifying the control aggressor’s strength). The Vi net
voltage equation (II) now turns to,

𝑉𝑉𝐼𝐼𝑉𝑉 =
𝐶𝐶𝐶𝐶
𝐶𝐶𝑇𝑇

.𝑉𝑉𝐷𝐷𝐷𝐷. (𝑚𝑚 + 𝑤𝑤𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶)

 Where, m = 𝑤𝑤1𝐿𝐿1 + 𝑤𝑤2𝐿𝐿2 . . . + 𝑤𝑤𝑛𝑛𝐿𝐿𝑛𝑛, and

𝐿𝐿𝐶𝐶 𝐶𝐶 = � 0 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝐶𝐶𝑐𝑐 𝑖𝑖𝑠𝑠 𝑙𝑙𝑙𝑙𝑤𝑤 𝑣𝑣𝑙𝑙𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒
1 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝐶𝐶𝑐𝑐 𝑖𝑖𝑠𝑠 ℎ𝑖𝑖𝑙𝑙ℎ 𝑣𝑣𝑙𝑙𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒

The CT-margin function is an abstraction for logic behavior
in CT-Computing. Therefore, the transformation of the CT-
logic gate’s behavior from one function to the other function
would also mean that there is an effective transformation in
their margin-functions. The CT-Polymorphic logic gate
evaluates to 0 (at node FI) only when, 𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼. The
aggressor weights and CC are tuned such that 𝑉𝑉𝐼𝐼𝑉𝑉 > 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 only
when,
 𝑚𝑚 ≥ (𝑘𝑘 − 𝑤𝑤𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶)
 Therefore, for a CT-Polymorphic gate to evaluate to 0 at the
output node FI, the input logic levels (𝐿𝐿𝑉𝑉), thus m should
satisfy the following conditions,

𝑊𝑊ℎ𝑒𝑒𝑐𝑐 𝐿𝐿𝐶𝐶 𝐶𝐶 = �0, 𝑚𝑚 ≥ (𝑘𝑘)
1, 𝑚𝑚 ≥ (𝑘𝑘 − 𝑤𝑤𝐶𝐶𝐶𝐶)

Therefore, the CT-margin function transforms as follows,

𝑊𝑊ℎ𝑒𝑒𝑐𝑐 𝐿𝐿𝐶𝐶 𝐶𝐶 = �0, 𝐶𝐶𝐶𝐶𝑀𝑀(𝑘𝑘.𝐶𝐶𝐶𝐶)
1, 𝐶𝐶𝐶𝐶𝑀𝑀((𝑘𝑘 − 𝑤𝑤𝐶𝐶𝐶𝐶).𝐶𝐶𝐶𝐶)

In other words, when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0, the inverter can flip its state
only when it receives the voltage through a total coupling
capacitance of k.CC; therefore, the gate’s logic behavior
corresponds to the margin function CTM(k.CC). However,
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, an extra voltage would be induced through
capacitance wCt.CC, leaving only (k-wCt)CC capacitance
margin; i.e., the inverter can now flip its state just with the
voltage induced due to capacitance greater than or equal to
(k- wCt)CC. Therefore, the margin function and its
corresponding logic behavior will be transformed to CTM((k-
wCt)CC).

We have implemented various 2-input and 3-input CT-
polymorphic logic circuits. Fig.5 shows the CT-Polymorphic
AND2-OR2 Circuit and its simulation response. Table.III
presents the circuit design parameters for AND2-OR2 gate,

which are CC, input and control aggressors’ weights, and PMOS
and NMOS widths ratio. The table also presents the effective
transformation of CT-margin function with respect to control
logic 𝐿𝐿𝐶𝐶 𝐶𝐶 and its corresponding function. It can be observed

TABLE IV
CROSSTALK LOGIC DESIGN TABLE FOR 3-INPUT POLYMORPHIC GATES

w1 w2 w3 wCt

0 CTM(3CC) AND3

1 CTM(CC) OR3

0 CTM(3CC) AND3

1 CTM(2CC) CARRY

0 CTM(2CC) CARRY

1 CTM(CC) OR3

0 CTM(3CC) OA21

1 CTM(2CC) AO21

0 CTM(4CC) AND3

1 CTM(2CC) AO21

0 CTM(4CC) AND3

1 CTM(3CC) OA21

0 CTM(3CC) OA21

1 CTM(1CC) OR3

0 CTM(2CC) OA21

1 CTM(1CC) OR3

0 CTM(4CC) CARRY

1 CTM(3CC) AO21

0 CTM(5CC) OA21

1 CTM(4CC) CARRY
1 : 1

1 : 2

1 : 2

1 : 3

1 : 5

1 : 2

Logic
Function

1 : 2

1 : 1

1 : 3

1 : 2

Gate
CC

(fF)
Aggressor Weights

LCt
Margin

Function

1

AND3-
OR3

1 1 1 1 2

AND3-
CARRY

0.9 1 1 1

1

CARRY-
OR3

4.5 1 1 1 1

OA21-
AO21

0.7 1 1 2

1

AND3-
AO21

0.28 1 1 2 2

AND3-
OA21

0.21 1 1 2

1 2 1

OA21-
OR3

0.97 1 1 2 2

Width
Ratio
(P:N)

OA21-
CARRY

0.6 2 2 3 1

CARRY-
AO21

2.2 2 2 3 1

AO21-
OR3

3 1

Fig.5 2-input Crosstalk-Polymorphic Logic Gate: i) AND2-OR2 Schematic, ii) AND2-OR2 Simulation response

TABLE III
CROSSTALK LOGIC DESIGN TABLE FOR AND2-OR2 GATE

Width Ratio

w1 w2 wCt PMOS:NMOS

0 CTM(2CC) AND2

1 CTM(CC) OR2
1 : 1

AND2-
OR2

1 1 1 1

Gate
CC

(fF)

Ag Weights
LCt

Margin
Function

Logic
Function

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

from the simulation response (Fig.5) of the circuit that when
𝐿𝐿𝐶𝐶 𝐶𝐶 = 0 the circuit responds as OR gate, whose behavior is
abstracted to CT-margin function CTM(2CC) in the table. But
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, the circuit responds as AND gate, whose
behavior is abstracted to CTM(CC) in the table. Next, we have
implemented ten different types of 3-input polymorphic circuits
which are listed in Table.IV. In order to limit the space, all these
circuits are represented by single schematic in Fig.7 as all of
these gates have uniform circuit topology with only difference
in their design parameters. Table.IV lists all the circuit-design
parameters for different gates. The simulation response of all
the circuits are presented in Fig.7, where the first panel shows
Dis and Ct signals; the second panel shows the input
combinations fed through A, B and C; and rest of the panels
show the response of different gates at node F. For AND3-OR3
circuit, the inputs A, B, C, has the same coupling CC (i.e.,
w1=w2= w3=1), while Ct aggressor receives 2CC capacitance
(i.e., wCt=2). When 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0, the margin function for AND3-

OR3 gate is CTM(3CC), which makes it behave as AND3 as
shown in Fig.7 panel-3. Whereas, when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, the Ct
aggressor augments an extra charge through coupling
capacitance 2CC and effectively manipulates the margin
function to CTM(CC). Following the function CTM(CC), the
transition of either A or B or C is now sufficient to flip the
inverter; thus, the gate biases and operates as an OR3 gate as
shown in Fig.7 panel-3. It can be observed that the circuit
responds as AND3 when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 0, for first eight input
combinations (000 to 111), whereas, it responds as OR3 when
𝐿𝐿𝐶𝐶 𝐶𝐶 = 1, during next eight combinations (000 to 111). For
AND3 gate, if control aggressor is given just CC coupling
strength instead of 2CC in the previous case, CTM(3CC)
manipulates to CTM(2CC), which becomes polymorphic AND3-
CARRY gate as given the table. The corresponding simulation
response is in Fig.7 panel-4. The next gate is AO21-OA21
which is a heterogeneous to heterogeneous logic. The coupling
weights of aggressors are w1=w2=1, w3=2 and wct=1
(Table.IV). The margin function, CTM(3CC), alters to CTM(2CC)
when 𝐿𝐿𝐶𝐶 𝐶𝐶 = 1 and gives CT-polymorphic AO21-OA21 gate
(circuit response is in panel-6). The next six gates are
homogeneous to heterogeneous logic type. For AND3-AO21
gate, the aggressor weights are w1=w2=1, w3=2 and wct=2 (note
that the weights of inputs are heterogeneous). The margin
function for AND3, in this case, is CTM(4CC). The control
aggressor biases it to CTM(2CC) and operates the gate as AO21
(circuit response is in panel-7). In the previous case, if Ct is
given CC strength instead of 2CC, the margin function
manipulates from CTM(4CC) to CTM(3CC), giving rise to CT-
polymorphic AND3-OA21 gate as shown in Fig.7 pane-8.

Fig.7 Simulation responses of 3-input CT-Polymorphic logic gates

Fig.6 Generic 3-input Crosstalk-Polymorphic Logic Gate Schematic

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Similarly, CARRY-OR3, OA21-OR3, AO21-OR3, and OA21-
CARRY, and AO21-CARRY results are shown in Fig. 7.

Crosstalk-Polymorphic Cascaded Circuit Example
This section demonstrates cascading polymorphic gates to

implement a block/module level polymorphic circuit. Fig.8 is a
2-bit Multiplier-Sorter-Adder circuit. The circuit uses 31 gates in
total, out of which 25 are crosstalk gates, and 6 are inverters. 16
out of 25 crosstalk gates are polymorphic gates, which are
efficiently employed to switch the circuit between the multiplier,
sorter and adder operations. Two control signals, C1 and C2, are
given to a control circuitry shown in the inset figure, which
generates C3-C5 control signals. C1-C5 signals are employed in
the circuit to switch the circuit between three functions. Fig.9
shows the simulation response of the circuit; different operation
modes of the circuit are annotated on top, which are, Multiplier
(M), Sorter (S), and Adder (A). The first panel in the figure shows
Dis signal; Dis=1 is the discharge state (DS) and Dis=0 is the
Logic Evaluation (LE) state. The second panel shows the control
signals C1 and C2, whose values as 01, 11 and 10 corresponds to
the multiplier, sorter, and adder operations, respectively. Third
and fourth panels show the 2-bit inputs A[1:0] and B[1:0]. The
subsequent four panels show the 4-bit responses of the circuit,
Y[3:0]. In order to effectively demonstrate the transformation of
the circuit, control signals are given such that the circuit switches
alternately between multiplier, sorter, and adder modes, and in
each set of these modes, common input values are fed through
A1A0 and B1B0. For example, for the first input combinations,
11 and 10, the multiplier operation gives 0110 as output while the
succeeding sorter and adder operations give 1110 and 0101
outputs, respectively. Similarly, for the second inputs, 10 and
01, M, S, and A operations give 0010, 1100 and 0011 outputs,
respectively. In a similar fashion, few other combinations are
shown in the next stages. The circuit consumes only 155
transistors in total.

IV. COMPARISON
In this section, we compare the CT-polymorphic logic

circuits with respect to existing polymorphic approaches
available in the literature and disucuss its advantages and
disadvantages (Table V). The reconfigurability in CT-
polymorphic circuits is achieved by using the same Crosstalk
aggressor-victim technique that actually performs the logic
computation, which enables deliberate and very fast
reconfiguration of the gates. Despite of its radically different
logic and reconfigurability aspects, the working mechanism in
crosstalk computing is based on well-known capacitive
electrostatics, which makes it easily realizable through existing
process setups and fabrication techniques. The complex gates
listed for other approaches in the table are constructed by
cascading polymorphic NAND-NOR, AND-OR gates

C1 C4

C3

C5

C2

G6A0
B0

A1
B1

C5

C1

C2
Y3

A0

G5
G1

G2

G3

G4

C2

G11

Y2

C1

A1

0

C1
0

C1

G22

C2

G17

0
C4

C5

C3

A0

C5

C4

Y0

G7

G8

G9

G10B0

B1

G13

G14

G15 G16 G18

G19
0

Y1

G20

G21

G23

G30

G24
G25 G26

G270

G28

G29

C5

G12

G31

Control Circuitary
C1

C3

0

B0

Fig.8 Crosstalk Polymorphic Multiplier-Adder-Sorter circuit

Fig.9 Crosstalk Polymorphic Multiplier/Adder/Sorter circuit simulation response

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

presented in [1] and [20]. The traditional approach (‘CMOS’
column in the table) is multiplexer based, where independent
stand-alone circuits are designed and selected through a
multiplexer. Though this approach is mainstream and can be
implemented in any technology node (we have designed in
16nm), it consumes large resources as listed in the table.

To the best of our knowledge, a wide range of compact
single-stage and cascaded polymorphic complex logic
implementations like in Crosstalk logic were not reported in
other approaches. However, the scalability limitations that
needs to be overcome in CT-computing are i) ability to achieve
the efficient Crosstalk coupling networks, ii) Noise margins of
the CMOS inverter that limits the fan-in of the circuits, in turn
the ability to construct many single stage/gate complex CT-
polymorphic logic circuits (cascaded polymorphic circuits are
the solution), and iii) CT-Computing friendly polymorphic
logic synthesis algorithms/tools need to be developed for EDA
(Electronic Design Automation) flows. In our other works
[29][30], we have addressed several of these issues. The
evolved circuits discussed in the table V do possess a unique
merit that we can construct polymorphic circuits with
interesting control parameters such as temperature, supply-
voltage, light, radiation, etc.[1] (which are not done for in
Crosstalk circuit style). These features make them ideal
candidates for sensor-based and adaptable circuit applications.
It is to be noted that the CT-circuit presented in this paper are
only controlled using a control-voltage. Experimentally,
evolution techniques can be also applied to Crosstalk Circuits
to explore reconfigurability potentials based on all possible
control parameters.

Next, to compare with emerging reconfigurable transistors
we have considered ambipolar Si nanowire FET (SiNWFET)
by De Marchi et.al [20]. In this approach, a nanowire transistor
can be configured to either n-type or p-type with a control
voltage. Limitations of this approach are [19][20], density
benefit is limited, additional circuitry required to swap power
rails for pull-up and pull-down networks, non-robust device
response, and requirement of new fabrication steps in the
existing process flows. Also, compared to other exotic device-
based approaches [5], CT-Computing can be achieved through
existing fabrication techniques. Thus, it augments the

conventional CMOS based device, circuit, and manufacturing
paradigms. Finally, the CT-Polymorphic approach consumes
fewer transistors than any other transistors based polymorphic
circuit approach in the literature. By averaging the transistor
count of all the circuits in Table.V, the CT-Circuits consume
64%, 58%, and 40% less transistors compared to CMOS,
evolved circuits, and Ambipolar Circuit techniques,
respectively.

V. BENCHMARKING
The switching energy and performance for all the crosstalk
gates presented above are characterized and benchmarked with
their counterpart CMOS implementations (Table VI). The
CMOS implementation is multiplexer based, where
independent stand-alone circuits are designed and selected
through a multiplexer. Both the circuits are implemented and
benchmarked using 16nm PTM tri-gate transistor models. The
benefits are huge for CT-Computing circuits. As shown in
Table.VI, the CT-Polymorphic circuits achieve 2.8x density,
~1.5x performance, and ~2x power benefits. The benefits are
primarily due to reduced transistor count and are projected to
be higher for large-scale designs. A comparison of CMOS vs
Crosstalk circuit can illustrate the source of these benefits. For
an example, the AND3-CARRY polymorphic circuit, with its
Boolean expression, ABCS’+ S(AB+BC+CA), requires just 5
transistors compared to 30 transistors in CMOS based
implementation. Thus, in best case the transistor reduction is
6x. For the polymorphic Multiplier-Sorter-Adder unit, the
benefits are 3.4x and 62% in terms of density and power with
comparable performance with respect to CMOS at 16nm. It is
to be noted that owing to the reduced transistor count the
interconnection requirements would also be considerably less
at standard-cell level.

VI. CONCLUSION
Crosstalk Logic is a novel and radically different way of

doing the logic computation. The paper develops a detailed
framework for polymorphic logic circuits in Crosstalk Logic
and shows implementation of a wide range of crosstalk
polymorphic logic gates. The gates presented are
reconfigurable AND-OR, AO21-OA21, AND3-AO21, AND3-
OA21, OR3-AO21, OR3-OA21, AND3-CARRY, CARRY-

TABLE V. COMPARISON OF POLYMORPHIC TECHNOLOGIES
Technology CMOS Evolved Circuits[3] Ambipolar

NWFET[7]
Crosstalk-
Polymorphic

Mechanism

Circuit duplication
and use of
multiplexers to
select redundant
blocks

A control
voltage biases
the circuits
different
operation

Temperature
variation effects
on devices bias
the circuits to
different modes

Power supply
variation effects
on devices biases
the circuits to
different mode

Band structure of
the transistor is
altered from p-type
to n-type using a
control gate

Signal Interference
through interconnect
crosstalk

Control parameter Select Signal Control Voltage Temperature Supply Voltage Control voltage Control Voltage
Process-
Technology Node

16nm
(independent)

 0.35um (strongly dependent) 30nm (dependent) 16nm (friendly to
advanced nodes)

Scalability
Dependence

Synthesis Evolution
limitation
(Genetic
Algorithms)

Evolution
limitation
(Genetic
Algorithms)

Evolution
limitation
(Genetic
Algorithms)

Large scale
fabrication of
nanowires and
reliable ambipolar
property

-Crosstalk Coupling
network
-Noise Margins
-Polymorphic Logic
Synthesis

Trade-off Vs.
Custom ASIC

Density, power
and performance
penalties for
redundant blocks

Power and
performance
penalties and
limited density
benefits

Power and
performance
penalties and
limited density
benefits

Power and
performance
penalties and
limited density
benefits

Limited density
benefits

Density, Power and
Performance benefits

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

OR3, CARRY-AO21, OA21-CARRY and Inv-Buf. Our circuit
evaluation and benchmark comparisons show that CT-
Polymorphic logic approach is very compact (i.e less device
count) and efficient than other polymorphic approaches.

VII. REFERENCES
[1] A. Stoica, R. Zebulum, and D. Keymeulen, "Polymorphic Electronics,"

Evolvable Syst. From Biol. to Hardw., vol. 2210, pp. 291-302, 2001.
[2] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn, On polymorphic

circuits and their design using evolutionary algorithms, in Proc. of
IASTED International Conference on Applied Informatics AI2002,
Insbruck, Austria, 2002.

[3] Sekanina L. (2015) Principles and Applications of Polymorphic Circuits.
In: Evolvable Hardware. Natural Computing Series. Springer, Berlin,
Heidelberg

[4] Sekanina, L., Stareček, L., Kotásek, Z., Gajda, Z.: Polymorphic Gates in
Design and Test of Digital Circuits. International Journal of
Unconventional Computing, 4(2), 2008, Philadelphia, pp. 125 – 142,
ISSN 1548-7199.

[5] S. Rakheja and N. Kani, "Polymorphic spintronic logic gates for hardware
security primitives — Device design and performance benchmarking,"
2017 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Newport, RI, 2017, pp. 131-132.

[6] A. Stocia, D. Keymeulen, V. Duong, and C. Salazar-Lazaro, “Automatic
synthesis and fault-tolerant experiments on an evolvable hardware
platform. In IEEE Aerospace Conference Proceedings, volume 5, pages
46547 I, 2000.

[7] R. Ruzicka and V. Simek, "More Complex Polymorphic Circuits: A Way
to Implementation of Smart Dependable Systems", ElectroScope Pilsen,
vol. 7, no. 5, pp. 1-6, 2013, ISSN 1802-4564.

[8] Sekanina, L.: Evolution of Polymorphic SelfChecking Circuits. Proc. of
Evolvable Systems: From Biology to Hardware, Berlin, Springer, 2007,
pp. 186 – 197.

[9] L. Sekanina. Design and Analysis of a New Self-Testing Adder Which
Utilizes Polymorphic Gates. In Proc. of the 10th IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop DDECS 2007,
pages 246-246, Krakow, Poland, 2007. IEEE Computer Society.

[10] McDermott, M.W., and Turner, J.E.: ‘Configurable NAND/NOR
element’. United States Patent 5,592,107, January 1997.

[11] Burrows, James L. “Universal logic circuit.” U.S. Patent 4,558,236,
issued December 10, 1985.

[12] R. Ruzicka, “New Polymorphic NAND / XOR Gate 2 Known
Polymorphic Gates,” pp. 192–196, 2007.

[13] A. Stoica, G. Klimeck, C. Salazar-Lazaro, D. Keymeulen and A. Thakoor,
"Evolutionary design of electronic devices and circuits", Proc. of the 1999
Congress on Evolutionary Computation, 1999-July-6-9.

[14] A. Stoica and R. Andrei, "Adaptive and Evolvable Hardware - A Multi-
faceted Analysis," Second NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), pp.486-498, 2007.

[15] A. Stoica, T. Arslan, D. Keymeulen, Vu. Duong, R. Zebulum, I. Ferguson
and T. Daud, “Evolutionary recovery from radiation induced faults on
reconfigurable devices,” in proceedings of aerospace conference, vol. 4,
6-13 March 2004, IEEE, pp. 2449-2457.

[16] G. W. Greenwood, “On the practicality of using intrinsic reconfiguration
for fault recovery,” IEEE Trans. Evolutionary Computation, vol. 9, no. 4,
Aug. 2005, pp. 398-405.

[17] A. Stoica et al., "Taking evolutionary circuit design from experimentation
to implementation: some useful techniques and a silicon demonstration,"
in IEE Proceedings - Computers and Digital Techniques, vol. 151, no. 4,
pp. 295-300, 18 July 2004.

[18] W. Ditto, A. Miliotis, K. Murali, S. Sinha, and M. Spano, “Chaogates:
Morphing logic gates designed to exploit dynamical patterns,” Chaos 20,
037107 (2010)

[19] W. M. Weber, A. Heinzig, J. Trommer, D. Martin, M. Grube and T.
Mikolajick, "Reconfigurable nanowire electronics - A review", J. on
Solid-State Electronics, vol. 102, pp. 12-24, December 2014.

[20] M. De Marchi et al., “Configurable logic gates using polarity controlled
silicon nanowire gate-all-around FETs,” IEEE Electron Device Lett., vol.
35, no. 8, pp. 880–882, 2014.

[21] J. Zhang, P. E. Gaillardon, and G. De Micheli, “Dual-threshold-voltage
configurable circuits with three-independent-gate silicon nanowire
FETs,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 2111–2114, 2013.

[22] Yu, W. J., Kim, U. J., Kang, B. R., Lee, I. H., Lee, E. H., Lee, Y. H.:
Multifunctional logic circuit using ambipolar carbon nanotube transistor.
Proc. SPIE 7399, 739906 (2009).

[23] Paasch, G., Lindner, Th., Rost-Bietsch, C.: Operation and Properties of
Ambipolar Organic Field-effect Transistors, In: Journal of Applied
Physics, Vol. 98, No. 8, 2005, US.

[24] Naveen kumar Macha, et al., “A New Concept for Computing Using
Interconnect Crosstalks,” 2017 IEEE International Conference on
Rebooting Computing (ICRC), Washington, DC, USA, December 2017.

[25] Naveen kumar Macha, Sandeep Geedipally, Bhavana Tejaswee Repalle,
Md Arif Iqbal, Wafi Danesh, Mostafizur Rahman “Crosstalk based Fine-
Grained Reconfiguration Techniques for Polymorphic Circuits,”
IEEE/ACM NANOARCH 2018.

[26] Naveen kumar Macha, Bhavana Tejaswini Repalle, Sandeep Geedipally,
Rafael Rios, Mostafizur Rahman “A New Paradigm for Fault-Tolerant
Computing with Interconnect Crosstalks,” 2018 IEEE International
Conference on Rebooting Computing (ICRC), Washington, DC, USA,
December 2018.

[27] N. K. Macha, B. T. Repalle, M. A. Iqbal and M. Rahman, "A New
Computing Paradigm Leveraging Interconnect Noise for Digital
Electronics Under Extreme Environments," 2019 IEEE Aerospace
Conference, Big Sky, MT, USA, 2019, pp. 1-8, doi:
10.1109/AERO.2019.8741746.

[28] Predictive Technology Model (PTM) Tempe AZ USA Nov. 2011.
[29] Naveen Kumar Macha, Md Arif Iqbal, Bhavana Tejaswini Repalle,

Sehtab Hossain, Mostafizur Rahman, Crosstalk Noise based
Configurable Computing: A New Paradigm for Digital Electronics, IEEE
INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE 2021 (Under
Review)
Arif Iqbal, Naveen Kumar Macha, Bhabhana T Repalle, Mostafizur
Rahman, From 180nm to 7nm: Crosstalk Computing Scalability Study,
IEEE Electron Device Society S3S Conference,2019

TABLE VI
 BENCHMARKING OF CROSSTALK LOGIC GATES WITH RESPECT TO CMOS

NAND2 232.1 122.3 47.31 4.12 4.06 1.43

NOR2 202.7 260.5 -28.5 5.61 5.86 -4.492

AOI21 154.4 207 -34.07 5.73 5.51 3.94

OAI21 229.3 135.2 41.03 4.36 5.17 -18.52

NAND3 347.7 112.5 67.65 4.98 4.18 16.11

Carry 1198.8 326.59 72.75 14.58 8.69 40.4

NAND2-NOR2 796.14 139.03 82.54 13.46 4.32 67.89

NAND3-NOR3 1472.6 172.02 88.32 13.21 5.12 61.22

AOI21-OAI21 698.42 190.52 72.72 9.52 5.39 43.38

NAND3-AOI21 1091.3 641.38 41.23 14.08 14.14 -0.42

NAND3-OAI21 874.99 959.44 -9.65 11.69 19.4 -65.92

NOR3-AOI21 1030.4 661.67 35.78 17.78 12.65 28.86

NOR3-OAI21 938.88 546.89 41.75 18.14 11.47 36.8

CARRY-OR3 4258.6 420.15 90.13 15.02 8.3 44.74

Carry-AND3 3059.9 289.69 90.53 16.77 7.39 55.91

Carry-AO21 2332.9 481.31 79.37 28.92 10.56 63.48

OA21-Carry 2004.2 366.91 81.69 15.67 9.97 36.35

MUL-SORT-
ADD

16.2 fJ 6.104 fJ 62.41 61.5 54.4 11.56

Switching Energy (aJ) Performance (ps)

GATES CMOS
Cross-

talk
%Redu-

ction
CMOS

Cross-
talk

% Redu-
ction

	I. INTRODUCTION
	II. Crosstalk Computing
	A. Basic Logic Gates
	B. Complex Logic Gates

	III. Cross-Talk Polymorphic Logic Gates
	Crosstalk-Polymorphic Cascaded Circuit Example

	IV. Comparison
	V. Benchmarking
	VI. Conclusion
	VII. REFERENCES

