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ABSTRACT 

According to recent reports [1]-[3], FPGAs have increasingly 

become the prime targets for carrying out extremely sophisticated 

cyber-attacks. Reconfigurability, a core feature of FPGAs, which 

allow modular designs to be mapped, consequently makes them 

vulnerable, since it allows intruders to gain control of the hardware 

during run-time for Trojan insertion. In most cases, the attackers 

start with reverse engineering a reference hardware design before 

Trojan insertion. In this paper, we turn the tables and utilize 

bitstream reverse engineering for Trojan detection. Our approach is 

bottom-up: it starts with bitstream inspection, FPGA component 

identification from the layout and follows up with identification of 

malicious configurations. Due to this bottom-up approach, any 

stealthy malicious circuit can be detected, which is very hard to do 

through conventional design analysis methods [16] . We leverage 

open-source tools, publicly available datasets and vendor provided 

tools. The method is generic and can be applied to a wide range of 

FPGAs. An example of Trojan detection is shown for Xilinx 

Virtex5 VLX50T FPGA. Once the reference database is created, 

the Trojan detection is very fast, takes less than a minute on a 

general-purpose Intel Core i5 processor-based computer. The 

proposed Trojan detection approach is, to the best of our knowledge 

during publication, the only open-source, software-based, low-cost 

alternative to time consuming design re-construction and analysis 

based approaches. It can be applied at the customer end without 

requiring any hardware alteration/IP updates from FPGA vendors.  
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1. Introduction 

By 2020, experts predict that there will be an estimated 50 billion 

connected devices [4], which amounts to approximately 6 

connected devices per person on the planet. With this rapid increase 

in connectivity, cyber criminals have become more nefarious and 

cyberattacks grown more sophisticated. In particular, there has 

been a surge in new types of cyberattacks that target the network 

infrastructure such as high-speed routers, switches, firewalls and 

Intrusion Detection Systems (IDSs). FPGAs, whose core feature is 

reconfigurability, are a type of programmable logic device, widely 

used in network infrastructures to implement critical network 

functionality [5]-[12].  The very advantage of reconfigurability is 

consequently a curse for FPGAs, leaving them vulnerable to being 

exploited by cyber-attacks [1]-[3], [13]. In a recent case involving 

Cisco in 2019, a security firm exposed a security vulnerability in 

millions of Cisco routers, where an attacker can remotely gain root 

access to the router and reprogram the FPGA configuration 

bitstream to disable the Trust Anchor Module (TAm), which 

protects against boot-time exploits [1].  A few years back it was 

reported [14] that even military grade FPGAs (with readback 

disabled) can be compromised and back door methods can be found 

to insert malwares in FPGAs. In the literature [15]-[24], numerous 

authors report reverse engineering or Trojan insertions that 

compromise FPGA security. 

A hardware Trojan is an electronic circuit that serves a shadow 

purpose besides its intended functionality and is usually triggered 

by rare input events. State-of-the-art techniques to detect hardware 

Trojans target detection of trigger circuits [16], [25]. However, it 

was shown in [25] that stealthy Trojans can be designed by 

reconfiguring the high-level design and bitstream that can avoid 

detection by well- known techniques. We propose an automated 

bitstream Trojan detection framework that can be applicable for 

modern FPGAs (irrespective of vendor, model) given the bitstream 

is not encrypted. Towards that objective our contribution is three-

fold:  

a) Generation of frame database for correlation mapping 

between bitstream and FPGA architectures  

b) De-compiling of the bitstream to extract key components such 

as frame address, site location and configuration data  

c) Correlation of the extracted data with the frame database for 

detailed layout (with or without Trojan) retrieval  

For database creation, the placed and routed files from reference 

designs along with FPGA architectures from vendors are being 

used as inputs. Details of the static resources, routing and both 

programmable interconnects and logics are being considered. De-

compiling of bitstreams is based on the information provided in 

datasheets and multiple synthesis runs to check what changes occur 

in bitstreams due to deterministic variations in design files. Once 

the database is complete with exhaustive references and reasonable 

confidence is built on bitstream De-compiling , any arbitrary 

bitstream can be interpreted back to the layout through the 

correlation approach. Once the layout is interpreted, any miniscule 

changes can be identified by comparison with the original layout 

(without Trojan) from the vendor. We demonstrate the 

effectiveness of our method by showing detection of stealth circuits 
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that are undetectable at HDL level shown in [25]. Our 

demonstration is with the widely used Xilinx Virtex 5 family FPGA 

(V5VLX50T). The rest of the paper is organized as follows: in 

Section 2, the background and methodology of our Trojan detection 

scheme is described in detail. In Section 3, we implement a 

hardware Trojan detection example using our methodology on a 

Xilinx FPGA. Conclusion and future works are presented in 

Section 4.   

2. Background & Methodology 

The overall method is shown in Fig. 1. The idea is to convert a 

bitstream (with or without Trojan) to a layout level representation 

and compare that with another file that is Trojan free. If the 

comparison reveals no new information, then the bitstream under 

test is Trojan free, and is infected otherwise. In case of infection, 

the layout file will also reveal the location of the Trojan within the 

FPGA fabric and its logic/configuration information.  To convert a 

bitstream to an intermediate representation with layout level 

information, two databases and correlation of information between 

the bitstream frames and databases are required.  

2.1 Frame database for correlation mapping between bitstream 

and FPGA architectures:  

Extraction of information from any arbitrary bitstream requires 

information related to an FPGA design and architecture, namely (1) 

FPGA design architecture database and (2) bits to programmable 

logic and interconnect map database. We can collect FPGA 

architecture related information for databases from device specs. 

For Xilinx FPGAs, device specs can be collected from device-

specific XDLRC files and through Xilinx’s PARTGEN tool. For 

Altera FPGAs, such information can be obtained from RPF files. 

There are several open-source partial reconfiguration platforms 

such as Rapidsmith [26], Torc [20], HAL [19]Error! Reference 

source not found., BIL[27], BitstreamToNCD [28] that allow 

access to such a database. For our demonstration, we used 

Rapidsmith. A wide range of devices including Artix, Kintex, 

Spartan (2, 2e, 3, 3a, 3adsp, 3e), Virtex (e, 2, 2p, 4, 5, 6, 7) and 

Zynq family devices (totaling over 200 devices) are supported in 

this platform. For later generation of FPGAs RapidSmith2 [31], 

RapidWright [32] provide similar interfaces with device specs. 

After the databases are prepared for device specs, the next step in 

the flow (Fig. 1) is to prepare configuration frame (which bit 

programs what logic as shown in Fig. 2) database, and extract 

configuration frames from a bitstream and map them to relative 

FPGA configuration architecture. An FPGA can be perceived as a 

rectangular grid of tiles with each tile containing configurable logic 

and interconnects. To map to these grids of tiles, there is a grid of 

memory [30] on to which configuration frames are mapped. A 

physical site maps to a unique subset of tiles, which denotes a 

rectangular area enclosed by surrounding wire channels. Each tile 

has a grid position, a unique name, a type, and may contain an 

arbitrary number of entities such as LUTs, MUXes, together they 

are called Programmable Logic Points (PLPs). For Xilinx FPGAs, 

switch matrix is called Programmable Interface Points (PIPs). PIPs 

control configurable routing within and in-between tiles. Apart 

from PIPs, there are static wires that form internal connections.  

After configuration frames are extracted, we map them to PLPs and 

PIPs using reference databases.  Once the configuration points are 

recovered, we will create an intermediate representation of the 

design that was implemented in the bitstream and map it to a virtual 

FPGA device. That intermediate representation can then be 

transformed to XDL file, which can be easily converted to 

schematic and HDL files using Xilinx’s BITGEN and NETGEN 

utilities.  

The key information needed from bitstream analysis are the 

configuration data and location (which tile, PIP, etc. will be 

 
Figure 2. (A) Methodology for configuration frame database creation, (B) example of frame mapping to components 

 

 
Figure 1. Bitstream reverse engineering based Trojan 

detection framework 
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configured). A bitstream is a binary file composed of a series of 

words organized into “frames” [30]. A frame affects every block in 

a column of FPGA grid structure, and multiple horizontally 

adjacent frames are required to configure an entire column. Each 

frame is uniquely identified by an address and is the smallest 

addressable element. We have derived the composition of the frame 

address from the vendor datasheets [30]. The row address specifies 

which row in the grid will be written. The major address specifies 

the column within that row and the minor address identifies the 

frame number within the column. The BA bits specify the Random 

Access Memory, interconnect and/or logic type that will be 

programmed with configuration data. The frame address includes a 

Top indicator bit in position 20 that indicates whether the specified 

row is above or below the center of the device. Usually, only the 

first frame address is specified, and it is automatically 

incremented/decremented. The regions in the FPGA are separated 

based on clocks. Each clock region is given a row value in its 

address that increments away from the center of the device starting 

at 0. The row, column, frame organization information can be 

found from vendor’s datasheet.  

To identify meaningful application of the frames it is necessary to 

properly partition the configuration frame data into small segments 

to isolate the bits responsible for a specific PIP or element 

configuration. Our methodology for identifying frame 

configuration is shown in Fig. 3. We first create a reference design 

and then keep adding components to that reference design (by 

modifying the XDL file) and generate bitstreams. We use the XDL 

force method mentioned in [29]. Once the bitstreams are generated, 

we compute the difference between reference and new to identify 

meaningful application of those bits in FPGA. Through an iterative 

process, we build the database for all of the frames. 

Extraction of CLB/PIP/IOB mapping information: We partition 

the data in a per tile style, as tiles are the smallest building blocks 

of the FPGA. Because tiles of the same type contain the same 

resources, we start with the assumption that they exhibit the same 

mapping of 

configuration bits. 

Using the lookup 

table generated 

during bitstream 

analysis, 

corresponding 

configuration data 

chunk can be 

fetched for tiles of 

all types. After the 

data fetch, the next 

task is to map the 

configuration data 

with components 

inside the tile and 

construct logic.  

Following our 

proposed 

methodology, we were successful in recovery of the bitstream. We 

were able to decode logic information from bit frames. FPGAs 

typically constitute of Configuration Logic Blocks (CLBs), Block 

RAMs, Programmable Interconnect Points (PIPs), Interconnect 

Ports, and SoCs such as DSPs, Co-Processors, etc. At the heart of 

reconfigurability is the programming of CLBs to implement any 

arbitrary logic. CLB programming occurs through programming 

Look Up Tables (LUTs) inside CLBs. A Virtex 5 FPGA’s CLB is 

divided into 2 Slices [30], and each Slice has four 64-bit LUTs. To 

program a logic (i.e., AND, OR, XOR, etc.), the 64 bits of a 

particular LUT’s output needs to be programmed. To recover logic 

(whether the LUT is programmed with AND/OR/XOR, etc.), one 

needs to identify the location of the 64 bits that program a particular 

LUT (e.g., CLB1764, SliceL, LUTA) in sea of bits in the bitstream. 

Using the database that we developed, we were able to map bit 

frames to rows and columns in an FPGA fabric. Once the mapping 

was done, we used a bit correlation approach to recover the bits that 

program a particular LUT. In this correlation method, a particular 

LUT was programmed using an intermediate interface (i.e., XDL 

file) and the change was observed in corresponding bit frames.  

Through correlation between expected LUT output bits and 

observed bits, we can infer the location of configuration bits for a 

particular LUT and the arrangement of bits to program the LUT. 

To prevent this inference, a security mechanism is added by Xilinx, 

which we were able to decode. Instead of expected output from 

AND operation (i.e., 0000 0000 0000 0001), we observed the 

output to be (1111 1111 1111 1111) and spread across 4 frames. 

The reason behind this disparity is because Xilinx stores a set of 

constant values in input registers on which the desired operation is 

performed and finally the resultant bits are stored. As a result of 

this manipulation, expected outputs are not observed. A challenge 

was first to determine the constant values, and then to correlate the 

outputs with the observed ones from bit frames. To recover the 

constants, we repeatedly fed inputs to outputs and observed 

changes. It is notable that the constants change for type of Slices 

and for device family. Using the methodology described, we can 

determine constants for almost all devices.  

Using the constants and our methodology described earlier, we 

were able to create a map of LUTs, IOBs, and PIPs from bitstreams 

as shown in Figs. 2 and 4. This mapping reveals valuable 

information about bit correlation with FPGA components. Since 

the FPGA fabric consists of regular array of tiles, the same bit 

mapping information is relevant for all the CLB/INT/IOB tiles. 

Therefore, we can use this information to recover any arbitrary 

logic from any location in FPGA. 

2.2 De-compiling bitstream to extract key information 

After frame configuration database, our next step is to extract 

configuration information from the target bitstream. A typical 

bitstream file consists of header, authentication and data blocks 

[30]. To reverse the logic from bitstream, most important portion is 

the configuration data blocks, which are encapsulated in 

configuration data frames. To extract those frames, we need to first 

XOR bitstream frames with reference frames[26]. We first generate 

 
Figure 3. Extraction of configuration 

frames from the target bitstream 
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the reference frames (with header, checksum and data information) 

for an empty design such that when we compare with the target 

bitstream, the comparison will reveal only the configuration frames 

from target bitstream. During the bitstream parsing process we 

associate the extracted frames with relevant FPGA to identify the 

frame address, column, row, minor and top/bottom information. 

Once the configuration frames are extracted by XORing with 

reference frames, the next task is to interpret the contents of those 

frames by associating the bits with configuration database that we 

generated in Section 2.1. An example of correlation between 

extracted frame data from target bitstream and the configuration 

database is shown in Fig. 4.  

2.3 Correlation of extracted bits with configuration database 

and layout retrieval 

The bitstream reversal process begins with database lookups. In the 

database we store all the information about frames, and the frame 

address works as the identifier. Once we find a matching frame, 

then we need to correlate bits within the frame with database 

information. A frame in V5VLX50T consists of 41 words with each 

word consisting of 32 bits. For a particular frame, the database 

contains mapping information for all 41x32 = 1312 bits. By direct 

correlation, we can determine tile names, site names, pip names, 

etc., and recover instances and interconnects within a design. For 

interconnect recovery, we first extract individual PIPs and then 

connect them from the source to destination. If the PIP connections 

emanate from an IOB, we will call that IOB a source, and stitch the 

interconnects to reach the destination. For Trojan detection though, 

full recovery of interconnects is not necessary as will be shown in 

Section 3. Upon recovery of all components through correlations 

with databases, an intermediate representation of the bitstream file 

is created which contains detailed layout and configuration 

information. We then use the layout file to retrieve the XDL file, 

which then can be used to generate NCD and HDL files (Fig. 5).  

Using the proposed methodology, we were successful in recovering 

all CLB, IOB, BRAM and PIP information (ILogic, OLogic, 

IODelay) including configuration details, dummy instances for 

routing and port connections. Our interconnect stitching was 70% 

successful for a 16 NAND based trigger circuit. Since our objective 

was Trojan discovery, in most cases full interconnect recovery was 

not essential. Once the configuration database is generated, which 

  
Figure 5. Correlation of configuration frames with information 

from database and netlist retrieval. 

 

 
Figure. 4. Frame data from the target bitstream and corresponding results from our frame reference database is shown for a IOB frame. 

With different colors, matching of a frameword with a particular signature in database, corresponding site and tile names are shown.  
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is a one time requirement, the bitstream reversal process is very 

fast. In most cases it took less than 1 minute in an average Intel 

Core i5 processor-based computer. To the best of our knowledge, 

this is the fastest bitstream recovery demonstration reported in 

comparison to bitstream reverse engineering [26], [20], [19], [27], 

[28]. Key specs are listed below: 

Tasks Time Comparison 

Configuration 

database generation 

72-120 hours*  

Bitstream extraction 

& correlation to 

generate intermediate 

layout file 

30-60seconds* [26], [20], 

[19], [27], 

[28]/ 40-72hrs  

*Software platform: Eclipse IDE, Java, Xilinx ISE 14.5 

*Opensource device specs & partial programming: Rapidsmith 

*Hardware platform: Intel i5, 8GB RAM, general purpose computer 

3. Trojan Detection Example 

To demonstrate effectiveness of our method to detect Trojan, we 

use here an example of a decoder. In our case, the decoder behaves 

as a normal decoder when there is no Trojan present, and when 

there is a Trojan, for certain input combinations it outputs 0 

regardless of the desired output. To insert Trojan, we use an LUT 

with additional circuitry. The Trojan model is similar to [25], where 

a malicious LUT was inserted to showcase shadow behavior and 

incorrect operation. The Trojan insertion and activation in [25] was 

a two-step process where a malicious front-end first created a 

design with additional circuitry (i.e., LUT and a decode logic) to be 

hidden during placement, routing and timing checks, and a 

malicious back-end then replaced the bitstream with another 

synthesized bitstream with similar characteristics to trigger the 

Trojan.  To emulate the same behavior, we synthesized and 

generated bitstreams for both benign decoder and Trojan infected 

decoder shown in Fig 6A & B. Since our intention is to identify 

differences between benign and malicious bitstreams, two step 

Trojan insertion and activation is irrelevant for our case and we can 

only work with the final bitstreams. 

Output XDL snippets after reverse engineering both benign and 

infected decoders are shown in Fig. 6A &B (bottom). Only the 

differences are shown. The XDL file shows lowest level physical 

layout results; the tiles and interconnects that are configured in the 

FPGA fabric are shown in detail in the XDL file. In the FPGA 

fabric, there are columns designated for I/O pads, CLBs 

(Configuration Logic Blocks), 

BRAM, DSPs, and 

BRAMInterconnects. Inside each 

column, there are tiles which are 

further divided into sites. After 

synthesis, each I/O pad is given a 

specific tile and site address, and 

their configuration (input/output). In 

Fig. 6A (bottom) CLBLL_X16Y77 

implies L type CLB in the 16th 

column and 77th row of the fabric. 

Within that particular CLB, the Slice 

X27Y77 was configured with a logic 

which is shown next to LUT O6 for 

the circuit above. The decoder 

circuit had 8 inputs and 1 output. The 

inputs and outputs are all assigned to 

IOBs in the FPGA fabric. In order to 

connect to those IOBs, dummy 

configuration blocks are used which 

are defined as OLogic (for outputs) 

and ILogic (for inputs). It is 

noticeable from Fig. 6 that due to the 

insertion of malicious logic, the 

original equation in 

SLICE_X27Y77 was changed and it 

also had an effect on the routing; the 

Ologic places in IOI_X17Y79 was 

removed in the malicious bitstream. 

Our tool was successful in reversing 

the bitstreams and identifying each 

component within the bitstreams. 

 
Figure 6. A) Decoder circuit without Trojan, snippet of corresponding significant layout 

information is shown below, B) The same circuit as in A) with Trojan inserted. Corresponding 

change in Layout information after bitstream reversal is shown below. Only the portion of the 

layout that is different is shown for clarity. 
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From those identifications, it is clear that the Trojan is located in 

the CLBLL_X16Y77 location under SLICE_X27Y77 and the 

changed logic equation for the output LUT is 

(~A1*(A2*(~A3*(~A4*(~A5*(A6)))))) where A1 to A6 are inputs 

to that SLICE. In Fig. 6B (bottom), CLB recovery, we were also 

able to pinpoint whether A/B/C/D type LUT is configured. This 

bitstream reversal process is completely automated regardless of 

the bitstream size and type.  

4. Conclusion & Future Work 

This paper introduces a new method for Trojan detection in FPGA 

bitstreams. The reverse engineering methods, which are normally 

considered adversarial and hackers’ tools, are used in the positive 

context. Our framework for Trojan detection leverages open-source 

tools, publicly available information and vendor provided software. 

We show an example of Trojan insertion and detection through a 

decoder circuit. The bitstream extraction and Trojan detection 

process was very fast: it took ~30 seconds in a general-purpose Intel 

Core i5 processor-based computer. To our knowledge, this is the 

fastest bitstream information extraction demonstration and the first 

usage of reverse engineering of FPGA bitstreams for Trojan 

detection.  This research is meant to open new ways for low cost 

Trojan detection and removal at the customer end without requiring 

any new hardware or IP changes. Its successful implementation can 

significantly enhance security for reconfigurable hardware. Our 

future work will explore software-hardware approaches for Trojan 

detection and removal at run-time in a networked environment with 

many connected nodes to prevent man-in-the-middle and denial-of-

service type attacks due to reconfigurable router infiltrations. 
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