
Turning the Table: Using Reverse Engineering Techniques to

Detect FPGA Trojans

Wafi Danesh, Joshua Banago, Mostafizur Rahman
 Computer Science Electrical Engineering

 University of Missouri Kansas City, Kansas City, Missouri, USA

rahmanmo@umkc.edu

ABSTRACT

According to recent reports [1]-[3], FPGAs have increasingly

become the prime targets for carrying out extremely sophisticated

cyber-attacks. Reconfigurability, a core feature of FPGAs, which

allow modular designs to be mapped, consequently makes them

vulnerable, since it allows intruders to gain control of the hardware

during run-time for Trojan insertion. In most cases, the attackers

start with reverse engineering a reference hardware design before

Trojan insertion. In this paper, we turn the tables and utilize

bitstream reverse engineering for Trojan detection. Our approach is

bottom-up: it starts with bitstream inspection, FPGA component

identification from the layout and follows up with identification of

malicious configurations. Due to this bottom-up approach, any

stealthy malicious circuit can be detected, which is very hard to do

through conventional design analysis methods [16] . We leverage

open-source tools, publicly available datasets and vendor provided

tools. The method is generic and can be applied to a wide range of

FPGAs. An example of Trojan detection is shown for Xilinx

Virtex5 VLX50T FPGA. Once the reference database is created,

the Trojan detection is very fast, takes less than a minute on a

general-purpose Intel Core i5 processor-based computer. The

proposed Trojan detection approach is, to the best of our knowledge

during publication, the only open-source, software-based, low-cost

alternative to time consuming design re-construction and analysis

based approaches. It can be applied at the customer end without

requiring any hardware alteration/IP updates from FPGA vendors.

KEYWORDS

FPGA, Bitstream Reverse Engineering, Trojan Insertion, Bitstream

Recovery, Trojan Detection

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2018.

Insert Your Title Here: Insert Subtitle Here. In Proceedings of ACM

Woodstock conference (WOODSTOCK’18). ACM, New York, NY, USA, 2

pages. https://doi.org/10.1145/1234567890

1. Introduction

By 2020, experts predict that there will be an estimated 50 billion

connected devices [4], which amounts to approximately 6

connected devices per person on the planet. With this rapid increase

in connectivity, cyber criminals have become more nefarious and

cyberattacks grown more sophisticated. In particular, there has

been a surge in new types of cyberattacks that target the network

infrastructure such as high-speed routers, switches, firewalls and

Intrusion Detection Systems (IDSs). FPGAs, whose core feature is

reconfigurability, are a type of programmable logic device, widely

used in network infrastructures to implement critical network

functionality [5]-[12]. The very advantage of reconfigurability is

consequently a curse for FPGAs, leaving them vulnerable to being

exploited by cyber-attacks [1]-[3], [13]. In a recent case involving

Cisco in 2019, a security firm exposed a security vulnerability in

millions of Cisco routers, where an attacker can remotely gain root

access to the router and reprogram the FPGA configuration

bitstream to disable the Trust Anchor Module (TAm), which

protects against boot-time exploits [1]. A few years back it was

reported [14] that even military grade FPGAs (with readback

disabled) can be compromised and back door methods can be found

to insert malwares in FPGAs. In the literature [15]-[24], numerous

authors report reverse engineering or Trojan insertions that

compromise FPGA security.

A hardware Trojan is an electronic circuit that serves a shadow

purpose besides its intended functionality and is usually triggered

by rare input events. State-of-the-art techniques to detect hardware

Trojans target detection of trigger circuits [16], [25]. However, it

was shown in [25] that stealthy Trojans can be designed by

reconfiguring the high-level design and bitstream that can avoid

detection by well- known techniques. We propose an automated

bitstream Trojan detection framework that can be applicable for

modern FPGAs (irrespective of vendor, model) given the bitstream

is not encrypted. Towards that objective our contribution is three-

fold:

a) Generation of frame database for correlation mapping

between bitstream and FPGA architectures

b) De-compiling of the bitstream to extract key components such

as frame address, site location and configuration data

c) Correlation of the extracted data with the frame database for

detailed layout (with or without Trojan) retrieval

For database creation, the placed and routed files from reference

designs along with FPGA architectures from vendors are being

used as inputs. Details of the static resources, routing and both

programmable interconnects and logics are being considered. De-

compiling of bitstreams is based on the information provided in

datasheets and multiple synthesis runs to check what changes occur

in bitstreams due to deterministic variations in design files. Once

the database is complete with exhaustive references and reasonable

confidence is built on bitstream De-compiling , any arbitrary

bitstream can be interpreted back to the layout through the

correlation approach. Once the layout is interpreted, any miniscule

changes can be identified by comparison with the original layout

(without Trojan) from the vendor. We demonstrate the

effectiveness of our method by showing detection of stealth circuits

ASP-DAC’21, January, 2021, Tokyo, Japan Danesh et al.

that are undetectable at HDL level shown in [25]. Our

demonstration is with the widely used Xilinx Virtex 5 family FPGA

(V5VLX50T). The rest of the paper is organized as follows: in

Section 2, the background and methodology of our Trojan detection

scheme is described in detail. In Section 3, we implement a

hardware Trojan detection example using our methodology on a

Xilinx FPGA. Conclusion and future works are presented in

Section 4.

2. Background & Methodology

The overall method is shown in Fig. 1. The idea is to convert a

bitstream (with or without Trojan) to a layout level representation

and compare that with another file that is Trojan free. If the

comparison reveals no new information, then the bitstream under

test is Trojan free, and is infected otherwise. In case of infection,

the layout file will also reveal the location of the Trojan within the

FPGA fabric and its logic/configuration information. To convert a

bitstream to an intermediate representation with layout level

information, two databases and correlation of information between

the bitstream frames and databases are required.

2.1 Frame database for correlation mapping between bitstream

and FPGA architectures:

Extraction of information from any arbitrary bitstream requires

information related to an FPGA design and architecture, namely (1)

FPGA design architecture database and (2) bits to programmable

logic and interconnect map database. We can collect FPGA

architecture related information for databases from device specs.

For Xilinx FPGAs, device specs can be collected from device-

specific XDLRC files and through Xilinx’s PARTGEN tool. For

Altera FPGAs, such information can be obtained from RPF files.

There are several open-source partial reconfiguration platforms

such as Rapidsmith [26], Torc [20], HAL [19]Error! Reference

source not found., BIL[27], BitstreamToNCD [28] that allow

access to such a database. For our demonstration, we used

Rapidsmith. A wide range of devices including Artix, Kintex,

Spartan (2, 2e, 3, 3a, 3adsp, 3e), Virtex (e, 2, 2p, 4, 5, 6, 7) and

Zynq family devices (totaling over 200 devices) are supported in

this platform. For later generation of FPGAs RapidSmith2 [31],

RapidWright [32] provide similar interfaces with device specs.

After the databases are prepared for device specs, the next step in

the flow (Fig. 1) is to prepare configuration frame (which bit

programs what logic as shown in Fig. 2) database, and extract

configuration frames from a bitstream and map them to relative

FPGA configuration architecture. An FPGA can be perceived as a

rectangular grid of tiles with each tile containing configurable logic

and interconnects. To map to these grids of tiles, there is a grid of

memory [30] on to which configuration frames are mapped. A

physical site maps to a unique subset of tiles, which denotes a

rectangular area enclosed by surrounding wire channels. Each tile

has a grid position, a unique name, a type, and may contain an

arbitrary number of entities such as LUTs, MUXes, together they

are called Programmable Logic Points (PLPs). For Xilinx FPGAs,

switch matrix is called Programmable Interface Points (PIPs). PIPs

control configurable routing within and in-between tiles. Apart

from PIPs, there are static wires that form internal connections.

After configuration frames are extracted, we map them to PLPs and

PIPs using reference databases. Once the configuration points are

recovered, we will create an intermediate representation of the

design that was implemented in the bitstream and map it to a virtual

FPGA device. That intermediate representation can then be

transformed to XDL file, which can be easily converted to

schematic and HDL files using Xilinx’s BITGEN and NETGEN

utilities.

The key information needed from bitstream analysis are the

configuration data and location (which tile, PIP, etc. will be

Figure 2. (A) Methodology for configuration frame database creation, (B) example of frame mapping to components

Figure 1. Bitstream reverse engineering based Trojan

detection framework

Turning the Table: Using Reverse Engineering Techniques to Detect FPGA Trojans ASP-DAC’21, January, 2021, Tokyo, Japan

configured). A bitstream is a binary file composed of a series of

words organized into “frames” [30]. A frame affects every block in

a column of FPGA grid structure, and multiple horizontally

adjacent frames are required to configure an entire column. Each

frame is uniquely identified by an address and is the smallest

addressable element. We have derived the composition of the frame

address from the vendor datasheets [30]. The row address specifies

which row in the grid will be written. The major address specifies

the column within that row and the minor address identifies the

frame number within the column. The BA bits specify the Random

Access Memory, interconnect and/or logic type that will be

programmed with configuration data. The frame address includes a

Top indicator bit in position 20 that indicates whether the specified

row is above or below the center of the device. Usually, only the

first frame address is specified, and it is automatically

incremented/decremented. The regions in the FPGA are separated

based on clocks. Each clock region is given a row value in its

address that increments away from the center of the device starting

at 0. The row, column, frame organization information can be

found from vendor’s datasheet.

To identify meaningful application of the frames it is necessary to

properly partition the configuration frame data into small segments

to isolate the bits responsible for a specific PIP or element

configuration. Our methodology for identifying frame

configuration is shown in Fig. 3. We first create a reference design

and then keep adding components to that reference design (by

modifying the XDL file) and generate bitstreams. We use the XDL

force method mentioned in [29]. Once the bitstreams are generated,

we compute the difference between reference and new to identify

meaningful application of those bits in FPGA. Through an iterative

process, we build the database for all of the frames.

Extraction of CLB/PIP/IOB mapping information: We partition

the data in a per tile style, as tiles are the smallest building blocks

of the FPGA. Because tiles of the same type contain the same

resources, we start with the assumption that they exhibit the same

mapping of

configuration bits.

Using the lookup

table generated

during bitstream

analysis,

corresponding

configuration data

chunk can be

fetched for tiles of

all types. After the

data fetch, the next

task is to map the

configuration data

with components

inside the tile and

construct logic.

Following our

proposed

methodology, we were successful in recovery of the bitstream. We

were able to decode logic information from bit frames. FPGAs

typically constitute of Configuration Logic Blocks (CLBs), Block

RAMs, Programmable Interconnect Points (PIPs), Interconnect

Ports, and SoCs such as DSPs, Co-Processors, etc. At the heart of

reconfigurability is the programming of CLBs to implement any

arbitrary logic. CLB programming occurs through programming

Look Up Tables (LUTs) inside CLBs. A Virtex 5 FPGA’s CLB is

divided into 2 Slices [30], and each Slice has four 64-bit LUTs. To

program a logic (i.e., AND, OR, XOR, etc.), the 64 bits of a

particular LUT’s output needs to be programmed. To recover logic

(whether the LUT is programmed with AND/OR/XOR, etc.), one

needs to identify the location of the 64 bits that program a particular

LUT (e.g., CLB1764, SliceL, LUTA) in sea of bits in the bitstream.

Using the database that we developed, we were able to map bit

frames to rows and columns in an FPGA fabric. Once the mapping

was done, we used a bit correlation approach to recover the bits that

program a particular LUT. In this correlation method, a particular

LUT was programmed using an intermediate interface (i.e., XDL

file) and the change was observed in corresponding bit frames.

Through correlation between expected LUT output bits and

observed bits, we can infer the location of configuration bits for a

particular LUT and the arrangement of bits to program the LUT.

To prevent this inference, a security mechanism is added by Xilinx,

which we were able to decode. Instead of expected output from

AND operation (i.e., 0000 0000 0000 0001), we observed the

output to be (1111 1111 1111 1111) and spread across 4 frames.

The reason behind this disparity is because Xilinx stores a set of

constant values in input registers on which the desired operation is

performed and finally the resultant bits are stored. As a result of

this manipulation, expected outputs are not observed. A challenge

was first to determine the constant values, and then to correlate the

outputs with the observed ones from bit frames. To recover the

constants, we repeatedly fed inputs to outputs and observed

changes. It is notable that the constants change for type of Slices

and for device family. Using the methodology described, we can

determine constants for almost all devices.

Using the constants and our methodology described earlier, we

were able to create a map of LUTs, IOBs, and PIPs from bitstreams

as shown in Figs. 2 and 4. This mapping reveals valuable

information about bit correlation with FPGA components. Since

the FPGA fabric consists of regular array of tiles, the same bit

mapping information is relevant for all the CLB/INT/IOB tiles.

Therefore, we can use this information to recover any arbitrary

logic from any location in FPGA.

2.2 De-compiling bitstream to extract key information

After frame configuration database, our next step is to extract

configuration information from the target bitstream. A typical

bitstream file consists of header, authentication and data blocks

[30]. To reverse the logic from bitstream, most important portion is

the configuration data blocks, which are encapsulated in

configuration data frames. To extract those frames, we need to first

XOR bitstream frames with reference frames[26]. We first generate

Figure 3. Extraction of configuration

frames from the target bitstream

ASP-DAC’21, January, 2021, Tokyo, Japan Danesh et al.

the reference frames (with header, checksum and data information)

for an empty design such that when we compare with the target

bitstream, the comparison will reveal only the configuration frames

from target bitstream. During the bitstream parsing process we

associate the extracted frames with relevant FPGA to identify the

frame address, column, row, minor and top/bottom information.

Once the configuration frames are extracted by XORing with

reference frames, the next task is to interpret the contents of those

frames by associating the bits with configuration database that we

generated in Section 2.1. An example of correlation between

extracted frame data from target bitstream and the configuration

database is shown in Fig. 4.

2.3 Correlation of extracted bits with configuration database

and layout retrieval

The bitstream reversal process begins with database lookups. In the

database we store all the information about frames, and the frame

address works as the identifier. Once we find a matching frame,

then we need to correlate bits within the frame with database

information. A frame in V5VLX50T consists of 41 words with each

word consisting of 32 bits. For a particular frame, the database

contains mapping information for all 41x32 = 1312 bits. By direct

correlation, we can determine tile names, site names, pip names,

etc., and recover instances and interconnects within a design. For

interconnect recovery, we first extract individual PIPs and then

connect them from the source to destination. If the PIP connections

emanate from an IOB, we will call that IOB a source, and stitch the

interconnects to reach the destination. For Trojan detection though,

full recovery of interconnects is not necessary as will be shown in

Section 3. Upon recovery of all components through correlations

with databases, an intermediate representation of the bitstream file

is created which contains detailed layout and configuration

information. We then use the layout file to retrieve the XDL file,

which then can be used to generate NCD and HDL files (Fig. 5).

Using the proposed methodology, we were successful in recovering

all CLB, IOB, BRAM and PIP information (ILogic, OLogic,

IODelay) including configuration details, dummy instances for

routing and port connections. Our interconnect stitching was 70%

successful for a 16 NAND based trigger circuit. Since our objective

was Trojan discovery, in most cases full interconnect recovery was

not essential. Once the configuration database is generated, which

Figure 5. Correlation of configuration frames with information

from database and netlist retrieval.

Figure. 4. Frame data from the target bitstream and corresponding results from our frame reference database is shown for a IOB frame.

With different colors, matching of a frameword with a particular signature in database, corresponding site and tile names are shown.

Turning the Table: Using Reverse Engineering Techniques to Detect FPGA Trojans ASP-DAC’21, January, 2021, Tokyo, Japan

is a one time requirement, the bitstream reversal process is very

fast. In most cases it took less than 1 minute in an average Intel

Core i5 processor-based computer. To the best of our knowledge,

this is the fastest bitstream recovery demonstration reported in

comparison to bitstream reverse engineering [26], [20], [19], [27],

[28]. Key specs are listed below:

Tasks Time Comparison

Configuration

database generation

72-120 hours*

Bitstream extraction

& correlation to

generate intermediate

layout file

30-60seconds* [26], [20],

[19], [27],

[28]/ 40-72hrs

*Software platform: Eclipse IDE, Java, Xilinx ISE 14.5

*Opensource device specs & partial programming: Rapidsmith

*Hardware platform: Intel i5, 8GB RAM, general purpose computer

3. Trojan Detection Example

To demonstrate effectiveness of our method to detect Trojan, we

use here an example of a decoder. In our case, the decoder behaves

as a normal decoder when there is no Trojan present, and when

there is a Trojan, for certain input combinations it outputs 0

regardless of the desired output. To insert Trojan, we use an LUT

with additional circuitry. The Trojan model is similar to [25], where

a malicious LUT was inserted to showcase shadow behavior and

incorrect operation. The Trojan insertion and activation in [25] was

a two-step process where a malicious front-end first created a

design with additional circuitry (i.e., LUT and a decode logic) to be

hidden during placement, routing and timing checks, and a

malicious back-end then replaced the bitstream with another

synthesized bitstream with similar characteristics to trigger the

Trojan. To emulate the same behavior, we synthesized and

generated bitstreams for both benign decoder and Trojan infected

decoder shown in Fig 6A & B. Since our intention is to identify

differences between benign and malicious bitstreams, two step

Trojan insertion and activation is irrelevant for our case and we can

only work with the final bitstreams.

Output XDL snippets after reverse engineering both benign and

infected decoders are shown in Fig. 6A &B (bottom). Only the

differences are shown. The XDL file shows lowest level physical

layout results; the tiles and interconnects that are configured in the

FPGA fabric are shown in detail in the XDL file. In the FPGA

fabric, there are columns designated for I/O pads, CLBs

(Configuration Logic Blocks),

BRAM, DSPs, and

BRAMInterconnects. Inside each

column, there are tiles which are

further divided into sites. After

synthesis, each I/O pad is given a

specific tile and site address, and

their configuration (input/output). In

Fig. 6A (bottom) CLBLL_X16Y77

implies L type CLB in the 16th

column and 77th row of the fabric.

Within that particular CLB, the Slice

X27Y77 was configured with a logic

which is shown next to LUT O6 for

the circuit above. The decoder

circuit had 8 inputs and 1 output. The

inputs and outputs are all assigned to

IOBs in the FPGA fabric. In order to

connect to those IOBs, dummy

configuration blocks are used which

are defined as OLogic (for outputs)

and ILogic (for inputs). It is

noticeable from Fig. 6 that due to the

insertion of malicious logic, the

original equation in

SLICE_X27Y77 was changed and it

also had an effect on the routing; the

Ologic places in IOI_X17Y79 was

removed in the malicious bitstream.

Our tool was successful in reversing

the bitstreams and identifying each

component within the bitstreams.

Figure 6. A) Decoder circuit without Trojan, snippet of corresponding significant layout

information is shown below, B) The same circuit as in A) with Trojan inserted. Corresponding

change in Layout information after bitstream reversal is shown below. Only the portion of the

layout that is different is shown for clarity.

ASP-DAC’21, January, 2021, Tokyo, Japan Danesh et al.

From those identifications, it is clear that the Trojan is located in

the CLBLL_X16Y77 location under SLICE_X27Y77 and the

changed logic equation for the output LUT is

(~A1*(A2*(~A3*(~A4*(~A5*(A6)))))) where A1 to A6 are inputs

to that SLICE. In Fig. 6B (bottom), CLB recovery, we were also

able to pinpoint whether A/B/C/D type LUT is configured. This

bitstream reversal process is completely automated regardless of

the bitstream size and type.

4. Conclusion & Future Work

This paper introduces a new method for Trojan detection in FPGA

bitstreams. The reverse engineering methods, which are normally

considered adversarial and hackers’ tools, are used in the positive

context. Our framework for Trojan detection leverages open-source

tools, publicly available information and vendor provided software.

We show an example of Trojan insertion and detection through a

decoder circuit. The bitstream extraction and Trojan detection

process was very fast: it took ~30 seconds in a general-purpose Intel

Core i5 processor-based computer. To our knowledge, this is the

fastest bitstream information extraction demonstration and the first

usage of reverse engineering of FPGA bitstreams for Trojan

detection. This research is meant to open new ways for low cost

Trojan detection and removal at the customer end without requiring

any new hardware or IP changes. Its successful implementation can

significantly enhance security for reconfigurable hardware. Our

future work will explore software-hardware approaches for Trojan

detection and removal at run-time in a networked environment with

many connected nodes to prevent man-in-the-middle and denial-of-

service type attacks due to reconfigurable router infiltrations.

REFERENCES
[1] Kataria, J., Housley, R., Pantoga, J., & Cui, A. (2019). Defeating Cisco Trust

Anchor: A Case-Study of Recent Advancements in Direct {FPGA} Bitstream

Manipulation. In 13th {USENIX} Workshop on Offensive Technologies

({WOOT} 19).

[2] Govindan, V., Koteshwara, S., Das, A., Parhi, K. K., & Chakraborty, R. S.

(2019, December). ProTro: A Probabilistic Counter Based Hardware Trojan

Attack on FPGA Based MACSec Enabled Ethernet Switch. In International

Conference on Security, Privacy, and Applied Cryptography Engineering (pp.

159-175). Springer, Cham.

[3] Krautter, J., Gnad, D. R., & Tahoori, M. B. (2018). FPGAhammer: Remote

voltage fault attacks on shared FPGAs, suitable for DFA on AES. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 44-68.

[4] Lee, B., Amaresh, S., Green, C., & Engels, D. (2018). Comparative study of

deep learning models for network intrusion detection. SMU Data Science

Review, 1(1), 8.

[5] Yazdinejad, A., Parizi, R. M., Bohlooli, A., Dehghantanha, A., & Choo, K. K.

R. (2020). A high-performance framework for a network programmable packet

processor using P4 and FPGA. Journal of Network and Computer

Applications, 156, 102564.

[6] Ricart-Sanchez, R., Malagon, P., Salva-Garcia, P., Perez, E. C., Wang, Q., &

Calero, J. M. A. (2018). Towards an FPGA-Accelerated programmable data

path for edge-to-core communications in 5G networks. Journal of Network and

Computer Applications, 124, 80-93.

[7] Bonati, L., Polese, M., D'Oro, S., Basagni, S., & Melodia, T. (2020). Open,

Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road

Ahead. arXiv preprint arXiv:2005.10027.

[8] De Villiers, D. B. B. (2020). FPGA implementation of a network coding capable

switch (Doctoral dissertation).

[9] Kiat, W. P., Mok, K. M., Lee, W. K., Goh, H. G., & Achar, R. (2020). An energy

efficient FPGA partial reconfiguration based micro-architectural technique for

IoT applications. Microprocessors and Microsystems, 73, 102966.

[10] Wang, X., Niu, Y., Liu, F., & Xu, Z. (2020). When FPGA Meets Cloud: A First

Look at Performance. IEEE Transactions on Cloud Computing.

[11] Caulfield, A., Costa, P., & Ghobadi, M. (2018, June). Beyond SmartNICs:

Towards a fully programmable cloud. In 2018 IEEE 19th International

Conference on High Performance Switching and Routing (HPSR) (pp. 1-6).

IEEE.

[12] Li, J., Sun, Z., Yan, J., Yang, X., Jiang, Y., & Quan, W. (2020). DrawerPipe: A

Reconfigurable Pipeline for Network Processing on FPGA-Based

SmartNIC. Electronics, 9(1), 59.

[13] Ender, M., Moradi, A., & Paar, C. (2020). The Unpatchable Silicon: A Full

Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. In 29th {USENIX}

Security Symposium ({USENIX} Security 20).

[14] S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers

backdoor in military chip. In Proceedings of the 14th International Conference

on Cryptographic Hardware and Embedded Systems, CHES’12, pages 23–40,

Berlin, Heidelberg, 2012. Springer-Verlag

[15] Ender, M., Swierczynski, P., Wallat, S., Wilhelm, M., Knopp, P. M., & Paar, C.

(2019, January). Insights into the mind of a trojan designer: the challenge to

integrate a trojan into the bitstream. In Proceedings of the 24th Asia and South

Pacific Design Automation Conference (pp. 112-119).

[16] Zhang, J., & Qu, G. (2019). Recent attacks and defenses on FPGA-based

systems. ACM Transactions on Reconfigurable Technology and Systems

(TRETS), 12(3), 1-24.

[17] Aldaya, A. C., Sarmiento, A. J. C., & Sánchez-Solano, S. (2016). AES T-Box

tampering attack. Journal of Cryptographic Engineering, 6(1), 31-48.

[18] Chakraborty, R. S., Saha, I., Palchaudhuri, A., & Naik, G. K. (2013). Hardware

Trojan insertion by direct modification of FPGA configuration bitstream. IEEE

Design & Test, 30(2), 45-54.

[19] Fyrbiak, M., Wallat, S., Swierczynski, P., Hoffmann, M., Hoppach, S., Wilhelm,

M., ... & Paar, C. (2018). HAL—The missing piece of the puzzle for hardware

reverse engineering, Trojan detection and insertion. IEEE Transactions on

Dependable and Secure Computing, 16(3), 498-510.

[20] Steiner, N., Wood, A., Shojaei, H., Couch, J., Athanas, P., & French, M. (2011,

February). Torc: towards an open-source tool flow. In Proceedings of the 19th

ACM/SIGDA international symposium on Field programmable gate arrays (pp.

41-44).

[21] Horta, E. L., Lockwood, J. W., & Kofuji, S. T. (2002, September). Using

PARBIT to implement partial run-time reconfigurable systems. In International

Conference on Field Programmable Logic and Applications (pp. 182-191).

Springer, Berlin, Heidelberg.

[22] Moradi, A., Kasper, M., & Paar, C. (2012, February). Black-box side-channel

attacks highlight the importance of countermeasures. In Cryptographers’ Track

at the RSA Conference (pp. 1-18). Springer, Berlin, Heidelberg.

[23] Moradi, A., & Schneider, T. (2016, April). Improved side-channel analysis

attacks on Xilinx bitstream encryption of 5, 6, and 7 series. In International

Workshop on Constructive Side-Channel Analysis and Secure Design (pp. 71-

87). Springer, Cham.

[24] Wallat, S., Fyrbiak, M., Schlögel, M., & Paar, C. (2017, July). A look at the dark

side of hardware reverse engineering-a case study. In 2017 IEEE 2nd

International Verification and Security Workshop (IVSW) (pp. 95-100). IEEE.

[25] Krieg, C., Wolf, C., & Jantsch, A. (2016, November). Malicious LUT: a stealthy

FPGA trojan injected and triggered by the design flow. In 2016 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD) (pp. 1-8). IEEE.

[26] Lavin, C., Padilla, M., Lundrigan, P., Nelson, B., & Hutchings, B. (2010,

December). Rapid prototyping tools for FPGA designs: RapidSmith. In 2010

International Conference on Field-Programmable Technology (pp. 353-356).

IEEE.

[27] Benz, F., Seffrin, A., & Huss, S. A. (2012, August). Bil: A tool-chain for

bitstream reverse-engineering. In 22nd International Conference on Field

Programmable Logic and Applications (FPL) (pp. 735-738). IEEE.

[28] Ding, Z., Wu, Q., Zhang, Y., & Zhu, L. (2013). Deriving an NCD file from an

FPGA bitstream: Methodology, architecture and evaluation. Microprocessors

and Microsystems, 37(3), 299-312.

[29] Ender, M., Swierczynski, P., Wallat, S., Wilhelm, M., Knopp, P. M., & Paar, C.

(2019, January). Insights into the mind of a trojan designer: the challenge to

integrate a trojan into the bitstream. In Proceedings of the 24th Asia and South

Pacific Design Automation Conference (pp. 112-119).

[30] Virtex-5 FPGA Configuration User Guide, V3.12, May 2017, Available at-

https://www.xilinx.com/support/documentation/user_guides/ug191.pdf

[31] Nelson, B., Townsend, T., and Haroldsen, T., Rapidsmith2: A Library for Low-

Level Manipulation of Vivado Designs at the Cell/BEL Level, Feb 23, 2018,

available at-

https://github.com/byuccl/RapidSmith2/blob/master/docs/TechReport/TechRe

port.pdf

[32] Lavin, C., and Kaviani, A., "RapidWright: Enabling Custom Crafted

Implementations for FPGAs," 2018 IEEE 26th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM), Boulder, CO,

2018, pp. 133-140, doi: 10.1109/FCCM.2018.00030.

https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://github.com/byuccl/RapidSmith2/blob/master/docs/TechReport/TechReport.pdf
https://github.com/byuccl/RapidSmith2/blob/master/docs/TechReport/TechReport.pdf

Turning the Table: Using Reverse Engineering Techniques to Detect FPGA Trojans ASP-DAC’21, January, 2021, Tokyo, Japan

