
A Logic Simplification Approach for Very Large

Scale Crosstalk Circuit Designs

Md Arif Iqbal1, Naveen Kumar Macha, Bhavana Tejaswini Repalle, Mostafizur Rahman2

Computer Science Electrical Engineering, University of Missouri-Kansas City, MO, USA

mibn8@mail.umkc.edu1, rahmanmo@umkc.edu2

Abstract—Crosstalk computing, involving engineered

interference between nanoscale metal lines, offers a fresh

perspective to scaling through co-existence with CMOS. By

capacitive manipulations and innovative circuit style, not only

primitive gates can be implemented, but custom logic cells such as

an Adder, Subtractor can be implemented with huge gains. In this

paper, we introduce the Crosstalk circuit style and a key method

for large-scale circuit synthesis utilizing existing EDA tool flow.

We propose to manipulate the CMOS synthesis flow by adding two

extra steps: conversion of the gate-level netlist to Crosstalk

implementation friendly netlist through logic simplification and

Crosstalk gate mapping, and the inclusion of custom cell libraries

for automated placement and layout. Our logic simplification

approach first converts Cadence generated structured netlist to

Boolean expressions and then uses the synthesis tool (SIS) to

obtain majority functions, which is further used to simplify

functions for Crosstalk friendly implementations. We compare

our approach of logic simplification to that of CMOS and majority

logic-based approaches. Crosstalk circuits share some similarities

to majority synthesis that are typically applied to Quantum

Cellular Automata technology. However, our investigation shows

that by closely following Crosstalk’s core circuit styles, most

benefits can be achieved. In the best case, our approach shows

36% density improvements over majority synthesis for MCNC

benchmark circuits.

Keywords—Crosstalk Computing, Capacitive Coupling,

Crosstalk Logic, Majority Network, Logic Synthesis

I. INTRODUCTION

As the traditional way of CMOS scaling becomes difficult,
Crosstalk computing provides an alternative solution while
leveraging CMOS devices and interconnect technologies [1]-
[5]. In Crosstalk circuits, computation is realized by embracing
the increasing signal interference at advancing technology nodes
and astutely engineering it to obtain logic function. For
operation, the transition of signals on input metal lines called as
aggressor nets, induce a resultant summation of charge on output
metal line, called as victim net, through capacitive couplings.
This induced signal serves as an intermediate signal to control
thresholding devices like an inverter to get the desired logic
output.

All the elementary gates, as well as many multi-level logic
functions, can be implemented by a single Crosstalk gate [3]. To
implement a multi-level logic function, two different circuit
styles are followed which are homogeneous and heterogeneous.
In homogenous circuits, the coupling capacitance between input
and output nets are equal, whereas in heterogeneous, the
capacitances are unequal. Crosstalk circuits use these
homogeneous and heterogeneous Crosstalk circuits as primitive
cells with other basic gates like AND/OR. Due to the innovation

in circuit style and physical principle of Crosstalk computing,
the traditional synthesis flow for large circuits is not directly
applicable.

Majority logic, where the summation of signals determines
logic output through thresholding function, can resemble some
of the Crosstalk’s logic principles. However, existing majority
synthesis approaches in the literature mostly concentrate on
Quantum Cellular Automata technology where primitive cells
are only inverter and majority gates [6]-[8]. Though some
benefits can be obtained by using majority synthesis methods,
fundamentally, obtaining simplified expressions for Crosstalk
circuits require a different approach that utilizes fabric’s native
functionalities.

We propose in this paper, Crosstalk implementation friendly
logic simplification approach that takes advantage of both the
CMOS and majority synthesis methods for simplified Boolean
expressions. First, we take an arbitrary network in Verilog form
and use Cadence RTL Compiler [9] to generate a netlist of the
network with logic constraints (e.g., limit the tool to use
NAND/NOR, AOI, OAI gates only) to benefit from Crosstalk
implementations. Then the netlist is converted to Boolean
expressions and fed to the SIS [10] tool to obtain 3-input
Boolean expressions. Finally, these expressions are used in our
logic simplifier tool iteratively for obtaining Crosstalk friendly
expressions. Our results show that for three different circuits’
cm85, mux and pcle from MCNC benchmark suits [11], there
are 11%, 27%, and 32% transistor count reduction compared to
majority synthesis approach and 58%, 62%, and 24% transistor
count reduction compared to CMOS based approach,
respectively.

The rest of the paper is organized as follows: Section II
describes the fundamentals of Crosstalk computing (CT) and
implementation of logic gates. Section III presents the overview
of logic simplification methodology. Section IV compares and
benchmarks proposed simplification methods with majority
based synthesis and CMOS based synthesis methods and
Finally, Section V presents the conclusion.

II. CROSSTALK CIRCUIT STYLE & POTENTIAL FOR DENSITY,

POWER AND PERFORMANCE GAINS

We utilize deterministic interference between adjacent
interconnects for logic computing [1]. In this approach, metallic
nano-lines are organized in a compact manner such that
whenever signal transitions take place in these lines, the sum of
their Crosstalk interference gets induced through virtual
coupling capacitance in another metal nano-line that was
floating; the transitioning signals are inputs and the net induced
charge is the output. The coupling strength between the input

file:///C:/Users/mibn8/Desktop/3D_Thermal/mibn8@mail.umkc.edu
mailto:rahmanmo@umkc.edu

and output nano-lines and the net charge induced determines
what logic is being computed. Fig.1 shows the implementation
of primitive (NAND and NOR) gates in Crosstalk. During logic
computation, the victim net (Vi) voltage is controlled
electrostatically through coupling capacitances between two
aggressors (Ag1 and Ag2) and victim (Vi) net. To drive the Vi
node for the next round of logic evaluation, its voltage is
discharged to ground through a transistor controlled by dis
signal after every round of logic evaluation. Thus, the Vi node is
connected to an inverter acting as a threshold function on one
end and connected to the drain side of the discharge transistor
on the other end. This principle is used while implementing both

NAND and NOR gates with the only difference of coupling
strengths (CND & CNR) between inputs and Vi net.

By assigning different coupling capacitances (equal or
unequal) among the input aggressors and increasing input fan-
in, many complex logic functions can be achieved. Based on this
principle, two different circuit styles is applied; homogeneous
Crosstalk logic gates where aggressors are equally coupled and
heterogeneous Crosstalk logic gates where aggressors are
unequally coupled. Fig.2 shows the implementation of Crosstalk
homogeneous and heterogeneous logic gates with three input
fan-ins. In Figs.2 (i&ii), show implementation of heterogeneous
Crosstalk gate, AOI21 (AND-OR-Inverter), i.e., F= (AB+C)’
where the functionality is achieved by varying coupling
capacitances between the aggressors. Figs.2(iii&iv) shows the
example of homogeneous Crosstalk logic where Carry function,
F = MAJ3 (A,B,C) = AB +BC+CA is achieved by keeping same
coupling strength among the input aggressors. Noticeably, when
we have homogeneous functionality with multiple inputs, this
has some similarity to Majority logic where majority threshold
functions are generally used to obtain max/min functions.
However, the key difference is that we can achieve not only
Boolean logic gates (NAND, NOR) and Majority logic but also
heterogeneous logic. For us, the flexibility is much more than
just majority gates or that of CMOS which provides more
opportunities to compress logic using Crosstalk logic cells.

For large-scale circuits, logic cascading and maintaining
signal integrity is a critical issue. In this regard, the crosstalk
computing approach provides opportunities as well as
challenges. Since by utilizing crosstalk, we can implement both
fundamental logic gates and reduce complex combinational
logic blocks, any logic function can be implemented. The logic

Fig.1. Fundamental Crosstalk Logic Gates: i) NAND ii) NOR

 Fig.2. CT Heterogeneous and Homogenous gates, i) Heterogeneous gate: AOI21 (f1= AB+C), ii) Simulation results of AOI21, iii) Homogenous gate,

f2=AB+BC+CA, iv) Simulation results of function f2.

functions that require hierarchical implementation will be
implemented by cascading outputs through the coupling. In this
regard, we can use a constructive-destructive topology that is if
a non-inverted gate is implemented first, we can cascade the
output to an inverting gate or vice-versa. While cascading
outputs at several levels, maintaining signal integrity becomes a
challenge, since with each stage of coupling the induced voltage
in the next level reduces compared to the previous stage. We
resolved this issue in different ways by placing buffers or by
using a Pass-Gate solution, where, the inverting and non-
inverting gate interfaces are connected through a transmission
gate which is controlled by clock cycles [2]. The other solution
is by using a different set of Crosstalk logic gates which operate
on falling edge transition also. Thus, a fully working large-scale
compact circuits, with reduced size, improved performance and
power can be achieved using Crosstalk logic style.

III. OVERVIEW OF THE PROPOSED LOGIC SIMPLIFICATION

METHODOLOGY

In this section, we introduce our simplification approach for
Crosstalk circuit friendly expression and detail implementation
steps. We take advantage of the compressibility feature that
Crosstalk presents through custom logic, CMOS logic, Majority
logic and explain in our approach that how we can combine all
of them to obtain the best result.

Figs.3(i&ii) give a flow diagram of the Crosstalk logic
synthesis methodology. Our process starts with having Cadence
RTL Compiler that generates a netlist from Verilog code with
constraints such that the netlist use gates like NAND, NOR,
AOI, or OAI which are Crosstalk friendly. It is noticeable
though we cannot constrain the tool to use majority gates
(AB+BC+CA) or other heterogeneous logics that are especially
suitable for Crosstalk computing. Because of this, after
obtaining the netlist from Cadence tool then we convert it back

to Boolean expressions and feed it again through SIS tool such
that the SIS tool already works on an optimized Boolean
expression and further tries to simplify it in terms of majority
gates (Fig.3(i)). The new expression already has majority
expressions and some custom expressions which can be
implemented using universal gates like NAND/NOR gate,
however, we look for further opportunities for simplification as
given in Fig.3(ii) to get expressions for heterogeneous logic. If
the heterogeneous logics cannot be found we use Crosstalk
NAND/NOR gate and complete the Boolean expression.
Finally, we obtain an expression that can be converted into
structural netlist and that structural netlist can be used in
conjunction with cell libraries to obtain full layout and
parametric results like area, power, and performance.

Fig.4 represents the pseudo-algorithm of our simplification
approach where we check for each function of the network to be
simplified as Crosstalk friendly expression. Variables that are
used in the algorithm are defined as follows:

f1,f2,f3 A function in network N
S Set of Crosstalk homogeneous &

heterogeneous function
fn Fan-in to network N
S’ Inverted Crosstalk homogeneous &

heterogeneous function
li The ith literal in the expression for function f
pj The jth product term for function f
nl No. of literals in function f
T No. of the transistor in the function
I No. of the inverter in the function
fdm Function f after applying De Morgan’s Law

The corresponding pseudo algorithm takes in preprocessed

and decomposed network as input and returns a more simplified

Fig.3. Overview of proposed logic simplification methodology. i) Top-level simplification approach, ii) Detail steps of proposed logic simplification approach

network that is Crosstalk friendly. After preprocessing and
decomposing, each function f of the network N is checked to
determine whether the function f is in homogeneous or
heterogeneous Crosstalk form. If so, we proceed to simplify the
next function. Otherwise, as shown in Fig.3(ii), we check to see
if there exist more than two literals in the function. If there exist
only two literals in the function, we check for transistor count.
First, we calculate a number of transistors need to implement
function f. Then, we take an inverted function (fx) of f and
calculate the required transistor. If the transistor count for fx is
lower than the original function f, we update the function with
fx. For example, consider a function f=a+b’. Crosstalk mapping
would require seven transistors including an inverter for literal
‘b’ to map the function f. However, inverted function f’= fx =
(a’b)’ would require only five transistors. If there are more than
two literals present in the function, we look for any common
literal that is present in all the product terms of the function. If a
common literal exists, we factor out this literal and map with
heterogeneous Crosstalk circuits. Consider, function f = bc + ca.
If we are to map crosstalk gates directly, it would take three
Crosstalk gates whereas if we factor out the common literal ‘c’
from both product terms, function f, therefore, can be presented
as f = cf1, where f1= (b+a), thus requiring only one Crosstalk

gate. If there are no common literals, we check whether all the
functions are synthesized or not. After simplifying all the
functions in the network N, we further investigate if there exist
any function that is in inverted form. If so, by using Crosstalk
fabric inherent feature, we can save an additional inverter,
required for making function f inverted. The final process is to
remove all the redundancies, if exist, otherwise terminate. For
redundancy removal, we follow the procedure explained in [8].

Next, we present Boolean expressions of the different
network to explain the flowchart. First, the Boolean expression
is obtained from a 4-bit ALU and later one is the network for the
2-bit multiplier. We represent the Crosstalk functions by
denoting as function Xgate(a,b,c) where a,b,c are the sub-
functions and subscript ‘gate’ defines what type of logic the
function will be implemented.

A. First example

Step 1: Boolean expression obtained from 4-bit ALU:

((((A1A2+A1B2’)+A2(B2’+B1’))+B1’B2’)A3+(((A1A2+A1B2’)+A

2(B2’+B1’)+B1’B2’)B3’+(A3+(B0’B3’))’)+A3B2B3’

Step 2: By using SIS [10] tool to preprocess and decompose,
we obtain the following expression,

N = f2 + f3 ’+ f5
f1 = A1 + B1’ (1)
f2 = A3B0’B3’ (2)
f3 = A3B2B3’ (3)
f4 = f1A2 + f1B2’ + A2B2’ (4)
f5 = f4A3 + f4B3’ (5)

Step 3: For each function of network N, presented in
equation (1)-(5), we check if the function is in Crosstalk
homogeneous or heterogeneous form.

 The first function, f1 is neither in homogeneous nor in
heterogeneous form. Next, we find that it has only two
literals. Then, we check for fewer transistor count which
we get after applying De Morgan’s law and then taking
inverter of the function f. Therefore, the updated function
is f1 = (A1’B1)’. Since there are still three other functions
to be simplified, we proceed to the next function, f2.

 Function f2 is directly in Crosstalk homogeneous form
Xand(A,B,C). We proceed to simplify the next function.

 Function f2 is also in Crosstalk homogeneous form
Xand(A,B,C). Therefore, we update the function with
Crosstalk homogeneous expression and check if there is
any other function to be simplified.

 Function f4 is in Crosstalk homogeneous form
Xhomo(AB+BC+CA) too, so, we update the function with
Crosstalk homogeneous gate.

 Function f5 cannot be mapper with heterogeneous or
homogeneous form. Next, we check to see if the function
has any common literals. We find that f4 is the common
literal in both of the product terms of function f5.
Therefore, we factor out the common term and update
the function as f5 = (A3+B3’) f4 which is in Crosstalk
heterogeneous form Xhetero((A+B)C).

Input: Optimized Network N

Output: Crosstalk expression corresponding to N

begin

1 Convert the netlist to Boolean expression

2 Preprocess and decompose network N by SIS

3 for each f in N do

4 if f ∉ S then

5 if nl > 2 then

6 if ∃li so that ∀j, li ∈ pj then

 f1 = f |li = 1

 f = lif1

7 else

 Add Crosstalk expression to the f

8 else

 //check the transistor count

 Count fold = T+2*I

 Apply De Morgan’s Law to function f

 fx = fdm’

 Count fnew= T+2*I

9 If Count fnew< Count fold then

 f = fx

10 else

 Keep the original f and add

Crosstalk expression

11 else

 Add Crosstalk expression to the f

12 if fn in N such that fn = f’ do

 fn = S’ where S’ is the inverted form of S

13 else

 break

14 Do redundancy check

15 End

 Fig. 4. Pseudo algorithm for Crosstalk logic simplification approach

 Next, we proceed to simplify other functions.

 From equation (1), we can see that both function f2 and
function f3 have common literals A3B3’ between them
which we can factor out and get the expression as
A3B3’(B0’+ B2)+f5. A3B3’ term can be obtained by
Crosstalk AND gate which we can map with (B0’+ B2)
to get Crosstalk heterogeneous form.

Step 4: Update the node function for inverted output. We
check if there is any function in an inverted form. If so, we can
avoid additional inverter by using Crosstalk fabric feature,
which can apply for the literal f3’.

Step 5: Check for redundant functions and also redundant
input to any single function. We have checked and found no
redundancy for the first example.

Step 6: Complete the process. Finally, we update the
network N with simplified Crosstalk friendly Boolean
expression which is,

 N=Xor(Xhetero(Xand(A3,B3’),B0’,B2),Xhetero(Xhomo(Xnand(A1’,B

1), A2, B2’),A3,B3’))

B. Second example:

Step 1: Input an arbitrary network: In 2-bit multiplier, there
are four outputs and four inputs to the network.

Y0 = A0B0
Y1 = A1A0’B0 + A1B1’B0 +A1’A0B1 + A0B1B0’
Y2 = A1A0’B1 + A1B1B0’
Y3 = A1A0B1B0

Step 2: By using the SIS [10] tool to preprocess and
decompose, we obtain the following expression:

Y3 = Y0A1B1 (1)

Y2 = f1B1 (2)

Y1 = f2 A1 + f3 (3)

Y0 = A0B0 (4)

f1 = A0’A1 + A1B0’ (5)
 f2 = A0’B0 + B0B1’+ A0’B1 (6)

f3 = A0 A1’B1 (7)

Step 3: For each function of network N, presented in
equation (1)-(7), we have to check if the function is already in
Crosstalk homogeneous or heterogeneous form.

 First function f1 is neither in homogeneous nor in
heterogeneous form. Next, we check to see if the
function has any common literals. We find that A1 is the
common literal in both of the product terms in function
f1. Therefore, we factor out the common term and update
the function as f1 = (A0’+B0’) A1 which is in Crosstalk
heterogeneous form Xhetero((A+B)C). Next, we proceed
to simplify other functions.

 Function f2 is directly in crosstalk homogeneous form
Xhomo(ab+bc+ca), therefore we update the function with
Crosstalk homogeneous gate and check whether all the
functions are simplified or not.

 As function f3 is also directly in Crosstalk homogeneous
form Xand(ABC) and there is no other function left to be
simplified, we move on to step 4.

Step 4: Update the node function for inverted output. We
check if there is any function in an inverted form. If so, we can
avoid additional inverter by using Crosstalk fabric feature. We
have found no function to be in inverted form.

Step 5: Check for redundant functions and also redundant
input to any single function. We have checked and found no
redundancy in the simplified network.

Step 6: Complete the process. Finally, we update the
network N with simplified Crosstalk friendly Boolean
expression.

Y3 = Xand(Y0,A1,B1) (1)

Y2= Xand(Xhetero(A1,A0’,B0’),B1) (2)

Y1= Xhetero(Xand(A0,A1’,B1),Xhomo(A0’,B0,B1’),A1) (3)

Y0 = Xand(A0,B0) (4)

f1 = A0’A1 + A1B0’ (5)
 f2 = A0’B0 + B0B1’+ A0’B1’ (6)

f3 = A0 A1’B1 (7)

TABLE I. COMPARISION OF DIFFERENT BOOLEAN NETWORKS

Standard
Function

I/O
CMOS

Synthesis using
existing method

Synthesis using
proposed method

R% w.r.t CMOS
R% w.r.t existing

method
Transistor

Count
Gate
Count

Transistor
Count

Gate
Count

Transistor
Count

Gate
Count

Transistor
Count

Gate
Count

Transistor
Count

Gate
Count

F=ab+bc+a'b'c' 3/1 30 7 20 6 [7] 13 3 56% 57% 35% 50%

F=d(c+(b'+a)') 4/1 18 4 25 6 [8] 12 3 33% 25% 52% 50%

Example1 7/1 94 21 62 16 [8] 44 11 53% 48% 29% 31%

Arithmetic Block

Full Adder 3/2 18 9 17 4 [8] 10 2 44% 77% 41% 50%

2-bit Multiplier 4/4 56 15 67 17 [8] 43 13 23% 13% 36% 23%

MCNC Benchmark

cm85a 11/3 264 64 125 31 [8] 111 27 58% 58% 11% 13%

mux 21/1 404 72 209 49 [8] 152 37 62% 49% 27% 12%

pcle 19/9 246 56 276 66 [8] 186 42 24% 25% 32% 36%

IV. COMPARISON RESULTS

Comparison between the proposed approach and majority
based synthesis approaches [6]-[8] is presented in this section.
We have simplified different functions, arithmetic blocks and
also three MCNC benchmark circuits [11]. Table I lists all the
results for benchmarks. For CMOS, all the primitive cells are
considered and for majority based approach, primitive cells are
replaced with equivalent Crosstalk gates. For gate count
comparison, the inverter is accounted for wherever needed for
all three different approaches. Our results show significant
improvement in a density benefit with respect to CMOS. The
average reduction (R%) in gate count with respect to CMOS
approach is 44%, with the maximum reduction being 77%. For
MCNC benchmarks, the average gate reduction is 44%, with the
maximum reduction being 58%. This is mostly due to traditional
logic reduction approaches for CMOS are constrained to use a
limited set of standard cell functions, where, more complex logic
functions are not implemented because of the performance
concerns that arise in CMOS logic circuits as they would require
long pull-up and pull-down branches of switch (transistor)
patterns. We also compared our results with majority based
simplification approaches due to the similarity between logic
reduction approaches. The average reduction (R%) in the gate
with respect to other majority synthesis approach is 33%, with
the maximum reduction being 50%. For MCNC benchmarks,
the average gate reduction is 20%, with the maximum reduction
being 36%. This is mostly due to majority logic approaches are
inefficient in logic reduction as they provide a very limited
number of primitive gates (majority-three, majority-five, and
inverter) and any logic function needs to be transformed to these
gates. However, for all the cases, the Crosstalk computing
provides holistic logic-reduction opportunities owing to its
ability to effectively implement all three, traditional standard
cell functions, majority-logic gates, and additional complex
functions.

V. CONCLUSION

We have presented a logic simplification approach for large
scale Crosstalk circuit integration. We have simplified different
Boolean networks like complex logic networks obtained from 4-
bit ALU, Multiplier, Adder and also three MCNC benchmark
circuits. Our results show significant density benefits over
CMOS and majority based approach; for the best case, there is

58% and 36% reduction in density over CMOS based and
Majority based logic reduction approach, respectively. The logic
simplification approach presented in this work is a vital step
towards the full-scale synthesis of Crosstalk circuits leveraging
existing EDA tools.

REFERENCES

[1] N. K. Macha, V. Chitturi, R. Vijjapuram, M. A. Iqbal, S. Hussain and M.
Rahman, "A New Concept for Computing Using Interconnect
Crosstalks," 2017 IEEE International Conference on Rebooting
Computing (ICRC), Washington, DC, 2017, pp. 1-2.

[2] N. K. Macha, S. Geedipally, B. T. Repalle, M. A. Iqbal, W. Danesh and
M. Rahman, "Crosstalk based Fine-Grained Reconfiguration Techniques
for Polymorphic Circuits," 2018 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), Athens, 2018, pp. 1-7.

[3] N. K. Macha, B. T. Repalle, S. Geedipally, R. Rios and M. Rahman, "A
New Paradigm for Fault-Tolerant Computing with Interconnect
Crosstalks," 2018 IEEE International Conference on Rebooting
Computing (ICRC), McLean, VA, USA, 2018, pp. 1-6.

[4] N. K. Macha, S. Geedipally, B. T. Repalle, M. A. Iqbal, W. Danesh and
M. Rahman, "A New Paradigm for Computing for Digital Electronics
under Extreme Environments," 2019 IEEE Aerospace and Electronic
Systems Society, Big Sky, Montana, USA, 2019, in press.

[5] R. Desh, N. K. Macha, S. Hossain, R. B. Tejaswini and M. Rahman, "A
Novel Analog to Digital Conversion Concept with Crosstalk Computing,"
2018 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Athens, 2018, pp. 1-3.

[6] Rui Zhang, P. Gupta and N. K. Jha, "Synthesis of majority and minority
networks and its applications to QCA, TPL and SET based
nanotechnologies," 18th International Conference on VLSI Design held
jointly with 4th International Conference on Embedded Systems Design,
Kolkata, India, 2005, pp. 229-234.

[7] K. Kong, Y. Shang and R. Lu, "An Optimized Majority Logic Synthesis
Methodology for Quantum-Dot Cellular Automata," in IEEE
Transactions on Nanotechnology, vol. 9, no. 2, pp. 170-183, March 2010.

[8] P. Wang, M. Niamat, S. Vemuru, M. Alam and T. Killian,
"Comprehensive majority/minority logic synthesis method," 2013 13th
IEEE International Conference on Nanotechnology (IEEE-NANO 2013),
Beijing, 2013, pp. 694-697.

[9] Cadence Conformal LEC, http://www.cadence.com/products/

[10] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and Al. L. Vincentelli,
“SIS: A System for Sequential Circuit Synthesis,” EECS Department,
University of California, Berkeley, 1992.

[11] S. Yang, Logic synthesis and optimization benchmark user guide: version
3.0. Microelectronics Center of North Carolina (MCNC), 1991, pp.502-
508.

http://www.cadence.com/products/

