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Abstract—Crosstalk computing, involving engineered 

interference between nanoscale metal lines, offers a fresh 

perspective to scaling through co-existence with CMOS. By 

capacitive manipulations and innovative circuit style, not only 

primitive gates can be implemented, but custom logic cells such as 

an Adder, Subtractor can be implemented with huge gains. In this 

paper, we introduce the Crosstalk circuit style and a key method 

for large-scale circuit synthesis utilizing existing EDA tool flow. 

We propose to manipulate the CMOS synthesis flow by adding two 

extra steps: conversion of the gate-level netlist to Crosstalk 

implementation friendly netlist through logic simplification and 

Crosstalk gate mapping, and the inclusion of custom cell libraries 

for automated placement and layout. Our logic simplification 

approach first converts Cadence generated structured netlist to 

Boolean expressions and then uses the synthesis tool (SIS) to 

obtain majority functions, which is further used to simplify 

functions for Crosstalk friendly implementations. We compare 

our approach of logic simplification to that of CMOS and majority 

logic-based approaches. Crosstalk circuits share some similarities 

to majority synthesis that are typically applied to Quantum 

Cellular Automata technology. However, our investigation shows 

that by closely following Crosstalk’s core circuit styles, most 

benefits can be achieved. In the best case, our approach shows 

36% density improvements over majority synthesis for MCNC 

benchmark circuits.  

Keywords—Crosstalk Computing, Capacitive Coupling, 

Crosstalk Logic, Majority Network, Logic Synthesis  

I. INTRODUCTION  

As the traditional way of CMOS scaling becomes difficult, 
Crosstalk computing provides an alternative solution while 
leveraging CMOS devices and interconnect technologies [1]-
[5]. In Crosstalk circuits, computation is realized by embracing 
the increasing signal interference at advancing technology nodes 
and astutely engineering it to obtain logic function. For 
operation, the transition of signals on input metal lines called as 
aggressor nets, induce a resultant summation of charge on output 
metal line, called as victim net, through capacitive couplings. 
This induced signal serves as an intermediate signal to control 
thresholding devices like an inverter to get the desired logic 
output. 

All the elementary gates, as well as many multi-level logic 
functions, can be implemented by a single Crosstalk gate [3]. To 
implement a multi-level logic function, two different circuit 
styles are followed which are homogeneous and heterogeneous. 
In homogenous circuits, the coupling capacitance between input 
and output nets are equal, whereas in heterogeneous, the 
capacitances are unequal. Crosstalk circuits use these 
homogeneous and heterogeneous Crosstalk circuits as primitive 
cells with other basic gates like AND/OR. Due to the innovation 

in circuit style and physical principle of Crosstalk computing, 
the traditional synthesis flow for large circuits is not directly 
applicable. 

Majority logic, where the summation of signals determines 
logic output through thresholding function, can resemble some 
of the Crosstalk’s logic principles. However, existing majority 
synthesis approaches in the literature mostly concentrate on 
Quantum Cellular Automata technology where primitive cells 
are only inverter and majority gates [6]-[8]. Though some 
benefits can be obtained by using majority synthesis methods, 
fundamentally, obtaining simplified expressions for Crosstalk 
circuits require a different approach that utilizes fabric’s native 
functionalities. 

We propose in this paper, Crosstalk implementation friendly 
logic simplification approach that takes advantage of both the 
CMOS and majority synthesis methods for simplified Boolean 
expressions. First, we take an arbitrary network in Verilog form 
and use Cadence RTL Compiler [9] to generate a netlist of the 
network with logic constraints (e.g., limit the tool to use 
NAND/NOR, AOI, OAI gates only) to benefit from Crosstalk 
implementations. Then the netlist is converted to Boolean 
expressions and fed to the SIS [10] tool to obtain 3-input 
Boolean expressions. Finally, these expressions are used in our 
logic simplifier tool iteratively for obtaining Crosstalk friendly 
expressions. Our results show that for three different circuits’ 
cm85, mux and pcle from MCNC benchmark suits [11], there 
are 11%, 27%, and 32% transistor count reduction compared to 
majority synthesis approach and 58%, 62%, and 24% transistor 
count reduction compared to CMOS based approach, 
respectively. 

The rest of the paper is organized as follows: Section II 
describes the fundamentals of Crosstalk computing (CT) and 
implementation of logic gates. Section III presents the overview 
of logic simplification methodology. Section IV compares and 
benchmarks proposed simplification methods with majority 
based synthesis and CMOS based synthesis methods and 
Finally, Section V presents the conclusion. 

II. CROSSTALK CIRCUIT STYLE & POTENTIAL FOR DENSITY, 

POWER AND PERFORMANCE GAINS 

We utilize deterministic interference between adjacent 
interconnects for logic computing [1]. In this approach, metallic 
nano-lines are organized in a compact manner such that 
whenever signal transitions take place in these lines, the sum of 
their Crosstalk interference gets induced through virtual 
coupling capacitance in another metal nano-line that was 
floating; the transitioning signals are inputs and the net induced 
charge is the output. The coupling strength between the input 
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and output nano-lines and the net charge induced determines 
what logic is being computed. Fig.1 shows the implementation 
of primitive (NAND and NOR) gates in Crosstalk. During logic 
computation, the victim net (Vi) voltage is controlled 
electrostatically through coupling capacitances between two 
aggressors (Ag1 and Ag2) and victim (Vi) net. To drive the Vi 
node for the next round of logic evaluation, its voltage is 
discharged to ground through a transistor controlled by dis 
signal after every round of logic evaluation. Thus, the Vi node is 
connected to an inverter acting as a threshold function on one 
end and connected to the drain side of the discharge transistor 
on the other end. This principle is used while implementing both 

NAND and NOR gates with the only difference of coupling 
strengths (CND & CNR) between inputs and Vi net. 

By assigning different coupling capacitances (equal or 
unequal) among the input aggressors and increasing input fan-
in, many complex logic functions can be achieved. Based on this 
principle, two different circuit styles is applied; homogeneous 
Crosstalk logic gates where aggressors are equally coupled and 
heterogeneous Crosstalk logic gates where aggressors are 
unequally coupled. Fig.2 shows the implementation of Crosstalk 
homogeneous and heterogeneous logic gates with three input 
fan-ins. In Figs.2 (i&ii), show implementation of heterogeneous 
Crosstalk gate, AOI21 (AND-OR-Inverter), i.e., F= (AB+C)’ 
where the functionality is achieved by varying coupling 
capacitances between the aggressors. Figs.2(iii&iv) shows the 
example of homogeneous Crosstalk logic where Carry function, 
F = MAJ3 (A,B,C) = AB +BC+CA is achieved by keeping same 
coupling strength among the input aggressors. Noticeably, when 
we have homogeneous functionality with multiple inputs, this 
has some similarity to Majority logic where majority threshold 
functions are generally used to obtain max/min functions. 
However, the key difference is that we can achieve not only 
Boolean logic gates (NAND, NOR) and Majority logic but also 
heterogeneous logic. For us, the flexibility is much more than 
just majority gates or that of CMOS which provides more 
opportunities to compress logic using Crosstalk logic cells. 

For large-scale circuits, logic cascading and maintaining 
signal integrity is a critical issue. In this regard, the crosstalk 
computing approach provides opportunities as well as 
challenges. Since by utilizing crosstalk, we can implement both 
fundamental logic gates and reduce complex combinational 
logic blocks, any logic function can be implemented. The logic 

 
Fig.1. Fundamental Crosstalk Logic Gates: i) NAND ii) NOR 

 

 
 Fig.2.  CT Heterogeneous and Homogenous gates, i) Heterogeneous gate: AOI21 (f1= AB+C), ii) Simulation results of AOI21, iii) Homogenous gate, 

f2=AB+BC+CA, iv) Simulation results of function f2. 



functions that require hierarchical implementation will be 
implemented by cascading outputs through the coupling. In this 
regard, we can use a constructive-destructive topology that is if 
a non-inverted gate is implemented first, we can cascade the 
output to an inverting gate or vice-versa. While cascading 
outputs at several levels, maintaining signal integrity becomes a 
challenge, since with each stage of coupling the induced voltage 
in the next level reduces compared to the previous stage. We 
resolved this issue in different ways by placing buffers or by 
using a Pass-Gate solution, where, the inverting and non-
inverting gate interfaces are connected through a transmission 
gate which is controlled by clock cycles [2]. The other solution 
is by using a different set of Crosstalk logic gates which operate 
on falling edge transition also. Thus, a fully working large-scale 
compact circuits, with reduced size, improved performance and 
power can be achieved using Crosstalk logic style. 

III. OVERVIEW OF THE PROPOSED LOGIC SIMPLIFICATION 

METHODOLOGY 

In this section, we introduce our simplification approach for 
Crosstalk circuit friendly expression and detail implementation 
steps. We take advantage of the compressibility feature that 
Crosstalk presents through custom logic, CMOS logic, Majority 
logic and explain in our approach that how we can combine all 
of them to obtain the best result. 

Figs.3(i&ii) give a flow diagram of the Crosstalk logic 
synthesis methodology. Our process starts with having Cadence 
RTL Compiler that generates a netlist from Verilog code with 
constraints such that the netlist use gates like NAND, NOR, 
AOI, or OAI which are Crosstalk friendly. It is noticeable 
though we cannot constrain the tool to use majority gates 
(AB+BC+CA) or other heterogeneous logics that are especially 
suitable for Crosstalk computing. Because of this, after 
obtaining the netlist from Cadence tool then we convert it back 

to Boolean expressions and feed it again through SIS tool such 
that the SIS tool already works on an optimized Boolean 
expression and further tries to simplify it in terms of majority 
gates (Fig.3(i)). The new expression already has majority 
expressions and some custom expressions which can be 
implemented using universal gates like NAND/NOR gate, 
however, we look for further opportunities for simplification as 
given in Fig.3(ii) to get expressions for heterogeneous logic. If 
the heterogeneous logics cannot be found we use Crosstalk 
NAND/NOR gate and complete the Boolean expression. 
Finally, we obtain an expression that can be converted into 
structural netlist and that structural netlist can be used in 
conjunction with cell libraries to obtain full layout and 
parametric results like area, power, and performance. 

Fig.4 represents the pseudo-algorithm of our simplification 
approach where we check for each function of the network to be 
simplified as Crosstalk friendly expression. Variables that are 
used in the algorithm are defined as follows: 

f1,f2,f3 A function in network N 
S Set of Crosstalk homogeneous & 

heterogeneous function 
fn Fan-in to network N 
S’ Inverted Crosstalk homogeneous & 

heterogeneous function 
li The ith literal in the expression for function f 
pj The jth product term for function f 
nl No. of literals in function f 
T No. of the transistor in the function 
I No. of the inverter in the function 
fdm Function f  after applying De Morgan’s Law 

  
The corresponding pseudo algorithm takes in preprocessed 

and decomposed network as input and returns a more simplified 

 
Fig.3. Overview of proposed logic simplification methodology. i) Top-level simplification approach, ii) Detail steps of proposed logic simplification approach 

 



network that is Crosstalk friendly. After preprocessing and 
decomposing, each function f of the network N is checked to 
determine whether the function f is in homogeneous or 
heterogeneous Crosstalk form. If so, we proceed to simplify the 
next function. Otherwise, as shown in Fig.3(ii), we check to see 
if there exist more than two literals in the function. If there exist 
only two literals in the function, we check for transistor count. 
First, we calculate a number of transistors need to implement 
function f. Then, we take an inverted function (fx) of f and 
calculate the required transistor. If the transistor count for fx is 
lower than the original function f, we update the function with 
fx. For example, consider a function f=a+b’. Crosstalk mapping 
would require seven transistors including an inverter for literal 
‘b’ to map the function f. However, inverted function f’= fx = 
(a’b)’ would require only five transistors. If there are more than 
two literals present in the function, we look for any common 
literal that is present in all the product terms of the function. If a 
common literal exists, we factor out this literal and map with 
heterogeneous Crosstalk circuits. Consider, function f = bc + ca. 
If we are to map crosstalk gates directly, it would take three 
Crosstalk gates whereas if we factor out the common literal ‘c’ 
from both product terms, function f, therefore, can be presented 
as f = cf1, where f1= (b+a), thus requiring only one Crosstalk 

gate.  If there are no common literals, we check whether all the 
functions are synthesized or not. After simplifying all the 
functions in the network N, we further investigate if there exist 
any function that is in inverted form. If so, by using Crosstalk 
fabric inherent feature, we can save an additional inverter, 
required for making function f inverted. The final process is to 
remove all the redundancies, if exist, otherwise terminate. For 
redundancy removal, we follow the procedure explained in [8]. 

Next, we present Boolean expressions of the different 
network to explain the flowchart. First, the Boolean expression 
is obtained from a 4-bit ALU and later one is the network for the 
2-bit multiplier. We represent the Crosstalk functions by 
denoting as function Xgate(a,b,c) where a,b,c are the sub-
functions and subscript ‘gate’ defines what type of logic the 
function will be implemented. 

A. First example 

Step 1: Boolean expression obtained from 4-bit ALU: 

((((A1A2+A1B2’)+A2(B2’+B1’))+B1’B2’)A3+(((A1A2+A1B2’)+A

2(B2’+B1’)+B1’B2’)B3’+(A3+(B0’B3’))’)+A3B2B3’ 

Step 2: By using SIS [10] tool to preprocess and decompose, 
we obtain the following expression, 

N = f2 + f3 ’+ f5  
f1 = A1 + B1’ (1) 
f2 = A3B0’B3’ (2) 
f3 = A3B2B3’ (3) 
f4 = f1A2 + f1B2’ + A2B2’ (4) 
f5 = f4A3  + f4B3’  (5) 

 

Step 3: For each function of network N, presented in 
equation (1)-(5), we check if the function is in Crosstalk 
homogeneous or heterogeneous form. 

 The first function, f1 is neither in homogeneous nor in 
heterogeneous form. Next, we find that it has only two 
literals. Then, we check for fewer transistor count which 
we get after applying De Morgan’s law and then taking 
inverter of the function f. Therefore, the updated function 
is f1 = (A1’B1)’. Since there are still three other functions 
to be simplified, we proceed to the next function, f2. 

 Function f2 is directly in Crosstalk homogeneous form 
Xand(A,B,C). We proceed to simplify the next function. 

 Function f2 is also in Crosstalk homogeneous form 
Xand(A,B,C). Therefore, we update the function with 
Crosstalk homogeneous expression and check if there is 
any other function to be simplified. 

 Function f4 is in Crosstalk homogeneous form 
Xhomo(AB+BC+CA) too, so, we update the function with 
Crosstalk homogeneous gate. 

 Function f5 cannot be mapper with heterogeneous or 
homogeneous form. Next, we check to see if the function 
has any common literals. We find that f4 is the common 
literal in both of the product terms of function f5. 
Therefore, we factor out the common term and update 
the function as f5 = (A3+B3’) f4 which is in Crosstalk 
heterogeneous form Xhetero((A+B)C).  

Input: Optimized Network N 

Output: Crosstalk expression corresponding to N 

begin 

1   Convert the netlist to Boolean expression 

2   Preprocess and decompose network N by SIS 

3   for each f in N do 

4         if f ∉ S then 

5               if nl > 2 then 

6                       if ∃li so that ∀j, li ∈ pj  then 

                                 f1 = f |li = 1 

                                f = lif1 

7                       else 

                               Add Crosstalk expression to the f 

8                else 

                      //check the transistor count 

                      Count fold = T+2*I 

                      Apply De Morgan’s Law to function f 

                      fx = fdm’ 

                     Count fnew= T+2*I 

9                               If Count fnew< Count fold  then 

                                                f = fx 

10                               else 

                                Keep the original f and add 

Crosstalk expression 

11            else 

                  Add Crosstalk expression to the f 

12    if fn in N such that fn = f’ do 

       fn = S’ where S’ is the inverted form of S 

13   else 

       break 

14   Do redundancy check 

15 End 

 
     Fig. 4. Pseudo algorithm for Crosstalk logic simplification approach 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 Next, we proceed to simplify other functions. 

 From equation (1), we can see that both function f2 and 
function f3 have common literals A3B3’ between them 
which we can factor out and get the expression as 
A3B3’(B0’+ B2)+f5. A3B3’ term can be obtained by 
Crosstalk AND gate which we can map with (B0’+ B2) 
to get Crosstalk heterogeneous form. 

Step 4: Update the node function for inverted output. We 
check if there is any function in an inverted form. If so, we can 
avoid additional inverter by using Crosstalk fabric feature, 
which can apply for the literal f3’. 

Step 5: Check for redundant functions and also redundant 
input to any single function. We have checked and found no 
redundancy for the first example. 

Step 6: Complete the process. Finally, we update the 
network N with simplified Crosstalk friendly Boolean 
expression which is, 

 N=Xor(Xhetero(Xand(A3,B3’),B0’,B2),Xhetero(Xhomo(Xnand(A1’,B

1), A2, B2’),A3,B3’)) 

B. Second example: 

Step 1:  Input an arbitrary network: In 2-bit multiplier, there 
are four outputs and four inputs to the network. 

Y0 =  A0B0 
Y1 =  A1A0’B0 + A1B1’B0 +A1’A0B1 + A0B1B0’ 
Y2 =  A1A0’B1 + A1B1B0’ 
Y3 =  A1A0B1B0 

Step 2:  By using the SIS [10] tool to preprocess and 
decompose, we obtain the following expression: 

Y3 = Y0A1B1 (1) 

Y2 = f1B1 (2) 

Y1 = f2 A1 + f3 (3) 

Y0 = A0B0 (4) 

f1 = A0’A1 + A1B0’ (5) 
      f2 = A0’B0 + B0B1’+ A0’B1 (6) 

f3 = A0 A1’B1 (7) 
 

Step 3: For each function of network N, presented in 
equation (1)-(7), we have to check if the function is already in 
Crosstalk homogeneous or heterogeneous form. 

 First function f1 is neither in homogeneous nor in 
heterogeneous form. Next, we check to see if the 
function has any common literals. We find that A1 is the 
common literal in both of the product terms in function 
f1. Therefore, we factor out the common term and update 
the function as f1 = (A0’+B0’) A1 which is in Crosstalk 
heterogeneous form Xhetero((A+B)C). Next, we proceed 
to simplify other functions. 

 Function f2 is directly in crosstalk homogeneous form 
Xhomo(ab+bc+ca), therefore we update the function with 
Crosstalk homogeneous gate and check whether all the 
functions are simplified or not.  

 As function f3 is also directly in Crosstalk homogeneous 
form Xand(ABC) and there is no other function left to be 
simplified, we move on to step 4. 

Step 4: Update the node function for inverted output. We 
check if there is any function in an inverted form. If so, we can 
avoid additional inverter by using Crosstalk fabric feature. We 
have found no function to be in inverted form. 

Step 5: Check for redundant functions and also redundant 
input to any single function. We have checked and found no 
redundancy in the simplified network. 

Step 6: Complete the process. Finally, we update the 
network N with simplified Crosstalk friendly Boolean 
expression. 

Y3 = Xand(Y0,A1,B1) (1) 

Y2= Xand(Xhetero(A1,A0’,B0’),B1) (2) 

Y1= Xhetero(Xand(A0,A1’,B1),Xhomo(A0’,B0,B1’),A1) (3) 

Y0 = Xand(A0,B0) (4) 

f1 = A0’A1 + A1B0’ (5) 
      f2 = A0’B0 + B0B1’+ A0’B1’ (6) 

f3 = A0 A1’B1 (7) 

TABLE I.  COMPARISION OF DIFFERENT BOOLEAN NETWORKS  

Standard 
Function 

I/O 
CMOS 

Synthesis using 
existing method 

Synthesis using 
proposed method 

R% w.r.t CMOS 
R% w.r.t existing 

method 
Transistor 

Count 
Gate 
Count 

Transistor 
Count 

Gate 
Count 

Transistor 
Count 

Gate 
Count 

Transistor 
Count 

Gate 
Count 

Transistor 
Count 

Gate 
Count 

F=ab+bc+a'b'c' 3/1 30 7 20 6 [7] 13 3 56% 57% 35% 50% 

F=d(c+(b'+a)') 4/1 18 4 25 6 [8] 12 3 33% 25% 52% 50% 

Example1 7/1 94 21 62 16 [8] 44 11 53% 48% 29% 31% 

Arithmetic Block 

Full Adder 3/2 18 9 17 4 [8] 10 2 44% 77% 41% 50% 

2-bit Multiplier 4/4 56 15 67 17 [8] 43 13 23% 13% 36% 23% 

MCNC Benchmark 

cm85a 11/3 264 64 125 31 [8] 111 27 58% 58% 11% 13% 

mux 21/1 404 72 209 49 [8] 152 37 62% 49% 27% 12% 

pcle 19/9 246 56 276 66 [8] 186 42 24% 25% 32% 36% 

 



IV. COMPARISON RESULTS 

Comparison between the proposed approach and majority 
based synthesis approaches [6]-[8] is presented in this section. 
We have simplified different functions, arithmetic blocks and 
also three MCNC benchmark circuits [11]. Table I lists all the 
results for benchmarks. For CMOS, all the primitive cells are 
considered and for majority based approach, primitive cells are 
replaced with equivalent Crosstalk gates. For gate count 
comparison, the inverter is accounted for wherever needed for 
all three different approaches.  Our results show significant 
improvement in a density benefit with respect to CMOS. The 
average reduction (R%) in gate count with respect to CMOS 
approach is 44%, with the maximum reduction being 77%. For 
MCNC benchmarks, the average gate reduction is 44%, with the 
maximum reduction being 58%. This is mostly due to traditional 
logic reduction approaches for CMOS are constrained to use a 
limited set of standard cell functions, where, more complex logic 
functions are not implemented because of the performance 
concerns that arise in CMOS logic circuits as they would require 
long pull-up and pull-down branches of switch (transistor) 
patterns. We also compared our results with majority based 
simplification approaches due to the similarity between logic 
reduction approaches. The average reduction (R%) in the gate 
with respect to other majority synthesis approach is 33%, with 
the maximum reduction being 50%. For MCNC benchmarks, 
the average gate reduction is 20%, with the maximum reduction 
being 36%. This is mostly due to majority logic approaches are 
inefficient in logic reduction as they provide a very limited 
number of primitive gates (majority-three, majority-five, and 
inverter) and any logic function needs to be transformed to these 
gates. However, for all the cases, the Crosstalk computing 
provides holistic logic-reduction opportunities owing to its 
ability to effectively implement all three, traditional standard 
cell functions, majority-logic gates, and additional complex 
functions. 

V. CONCLUSION 

We have presented a logic simplification approach for large 
scale Crosstalk circuit integration. We have simplified different 
Boolean networks like complex logic networks obtained from 4-
bit ALU, Multiplier, Adder and also three MCNC benchmark 
circuits.  Our results show significant density benefits over 
CMOS and majority based approach; for the best case, there is 

58% and 36% reduction in density over CMOS based and 
Majority based logic reduction approach, respectively. The logic 
simplification approach presented in this work is a vital step 
towards the full-scale synthesis of Crosstalk circuits leveraging 
existing EDA tools. 
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